DETERMINATION OF BLASTHOLE PARAMETERS BASED ON FIELD RESULTS

M.G. OSANLOO
Faculty of Mining And Metallurgy Engineering University of Amirkabir (Tehran Polytechnic), Tehran, IRAN

S.TABBE-EMAM
Mining Engineer, Mines and Metals Ministry of Iran

ABSTRACT Correct selection of coefficients for blasthole parameters in Ghalat limestone mine in Shahr-e-kord of Iran was determined following designing and performing of 20 blasting operations. After each blast, the amount of fragmented rock larger than one square meter, called oversize, was estimated and they were prepared for secondary blasting. The next blast hole pattern were designed based on the previous blasting results. The results of these field operations studies showed that the optimum ratio between spacing(S) and burden(B) in Ghalat limestone mine was 1.25. The ratio of cutheight(H), subdrilling(J) and length of stemming(T) to burden were: 4, 0.5 and 1 respectively (H/B=4 , J/B=0.5 , T/B=1). The field results under these conditions showed that more than 90 percentage of fragmented rocks would have sizes less than one square meter and the cost of production would be reduced by 18.9 percent.

1. INTRODUCTION

Proper selection of coefficient for blasthole parameters such as spacing, burden, cutheight, subdrilling and length of stemming for each particular mine can reduce secondary blasting operations and reduce cost of production (Clark, 1985, Singh, 1990). Today there are several equations that show the relation between spacing, cutheight, subdrilling, length of stemming and burden (Konya, 1985, Ash, 1990, Jimeno, et al. 1995). But non of these equations can be used as a general equation for all type of rocks, because the rock is a highly complex material. It varies in its characteristics across very short distance (Stewart and Kennedy 1971) therefore it is necessary to find specific equations that show the best relation between blasthole parameters of each particular mine. This paper discusses the correct selection of coefficients for blasthole parameters in Ghalat limestone mine located at 8 km west of Shahr-e-kord in south west of Iran, between 32°,26’,24” longitudinal and 50°,42’,36” latitudinal (Figure 1).

Annual production of this mine is 120000 tons and is mostly used by concrete manufacturer located 2 km from Ghalat limestone mine. The manufacturer can not use the raw material directly and it is required to reduce a limestone to sand and gravel size. For this purpose, a crusher with a feed opening of one square meter area is used. Therefore, all mine fragmented rocks should be less than one square meter. If not, otherwise, illegible ice and semi-illegal blasting operations will occur. In the past, blasting limestone w.o. nmeti kov dulling un da blastin’ without using the pailainUn relation FM desiyiti ne hotas link’ parametria ilohleins like lly rock ilvi GMaru \ lifilmii.s weie observed Men-
important problem was that, more than 25% of blasted rocks had greater than one square meter in size. This problem required secondary blasting operations, increased production cost and sometimes stopped crushing processes. In this study, several blastings were executed under predetermined conditions in order to define the optimum parametric ratios for S, H, T, J, and B by evaluating the measured and estimated quantities of fragmented rocks that are larger than 1 m in size.

2 FIELD OPERATIONS

In Ghalat limestone mine, the average specific gravity of limestone is 2.6 and its hardness estimated to be 3. The formation does not have major joints, therefore, the effect of joints on blasting of rocks were minor. Wagon drill with 3" diameter is used for drilling operations. To explode the rock, ANFO with specific gravity of 0.8 was used as the main charge, dynamite was used as the primer and booster. In each explosion, the condition of explosion such as number of holes, hole depth, total drilling length, tonnage of blasted rocks, spacing, burden, subdrifting, length of stemming, amount of charge per hole and weather conditions were recorded. After each explosion, the percentage of oversize were estimated. If the amount of oversize were more than 10% of total blasted rocks, the explosion was classified as "bad explosion". In this case, the oversize materials were collected and prepared for secondary blasting operations (Fig 2-4).

The design of the next blast was based on previous blasting results. The parameters were rearranged in order to have good explosion. This process was repeated until more than 95% of blasted rocks were less than 1 m in size.

![Fig 2](image1.jpg) One typical of bad explosion "Too much oversize"

The overall conditions of typical bad blasting operation were:

<table>
<thead>
<tr>
<th>Row</th>
<th>No of Holes</th>
<th>H(m)</th>
<th>Dynamite (gr/hole)</th>
<th>ANFO (kg/hole)</th>
<th>S(m)</th>
<th>B(m)</th>
<th>T(m)</th>
<th>J(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
<td>4</td>
<td>62.5</td>
<td>3</td>
<td>2.2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>43</td>
<td>125</td>
<td>65</td>
<td>2.5</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>5.5</td>
<td>187.5</td>
<td>85</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

![Fig 3](image2.jpg) The total amount of oversize collected for secondary blasting operations

By choosing correct delay, the fly rocks and ground vibration kept under control. After 14 explosions the oversizes and fly rocks were minor and the selected explosion conditions were recommended for the next.
blasting operations. Table 2 shows the conditions of good explosion in Ghalat limestone mine.

![Fig(5)](image)

Table 2 The conditions of one of good blasting operations

<table>
<thead>
<tr>
<th>No of Row</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of Holes</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Hole depth (H(m))</td>
<td>75</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Dynamite (gr/hole)</td>
<td>625</td>
<td>625</td>
<td>625</td>
<td>625</td>
</tr>
<tr>
<td>ANFO (kg/hole)</td>
<td>33</td>
<td>31</td>
<td>28</td>
<td>25</td>
</tr>
<tr>
<td>S(m)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B(m)</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>T(m)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>J(m)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

3 RESULTS

After 20 blasting operations in Ghalat limestone mine and analysing the results of operations, it was founded that the best conditions to obtain the optimum results are as following:

1- The ratio between spacing and burden is

\[S / B = K_S \] \hspace{2cm} (1)

Where \(K_s \) is spacing coefficient and the optimum value of \(K_s \) was 1.25. Therefore,

\[S = 1.25 B \] \hspace{2cm} (2)

The optimum value of \(S \) was ranged between 1.7 to 2 and that of \(B \) was between 1.4 to 1.6 (Fig 6).

2- The ratio between cutheight and burden is

\[H / B = K_h \] \hspace{2cm} (3)

Where \(K_h \) is cutheight coefficient and the optimum value of \(K_h \) was 4. Therefore,

\[H = 4 B \] \hspace{2cm} (4)

3- The ratio between subdrillling and burden is

\[S / B = K_j \] \hspace{2cm} (5)

Where \(K_j \) is coefficient of subdrillling and the optimum value of \(K_j \) was 0.5. Therefore,

\[J = 0.5 B \] \hspace{2cm} (6)

4- The ratio between length of stemming and burden is

\[T / B = K_t \] \hspace{2cm} (7)

Where \(K_t \) is coefficient of stemming and the optimum value of \(K_t \) was 1. Therefore,

\[T = B \] \hspace{2cm} (8)

In Ghalat limestone mine, the optimum results were obtained when \(S \geq 2 \) m and \(B \geq 1.6 \) m. Based on these conditions, the amount of ANFO per ton was 160 grams and amount of dynamite per ton was 15 grams. Fig 7 to 10 show the relation between "S" and "B" with amount of ANFO and dynamite required per ton of limestone.
The relationship between "B" and the amount of ANFO required per tonne of limestone. The optimum result was obtained at B=1.6 meter and 260 grams of ANFO per tonne of limestone.

The relationship between "S" and the amount of dynamite required per tonne of limestone. The optimum result was obtained at S = 2m and 1.5 kg dynamite per tonne of limestone.

4 CONCLUSION

Based on field operations studies in Ghalat limestone mine in Shahr-e-kord, a new relationship between "B", "S", "H", "J" and "T" was found. The results of blasting operations optimised using the new equations showed that more than 90% of blasted rocks would be less than one square meter in size and so that they could pass through the crusher. With the optimised blasting conditions, fly rock and ground vibration were negligible. It is understood that rocks are very complex material and have different character in different location. Therefore, the results obtained for Ghalat limestone mine may not exactly be the same for other limestone mines, but they may be suggested as good approximations for the start up operations.

Nomenclature

S - Spacing (m)
B - Burden (m)
H - (alicynt (m))
J - Subdrilling (m)
I - Stemming (m)
K - coefficient

ACKNOWLEDGMENTS

The authors wish to thank the Mines and Metals Ministry for their cooperation and support for carrying out several field tests.
REFERENCES

Ash, R L, 1990 Design of Masting rounds Surface mining, 2nd Ed, B A Kennedy, ed, AIME, SME, pp 565-583

Clark, G B, 1987 Principle of rock fragmentation, John Wiley and Sons, New Yoi

Konya, CJ and Walter, E J, 1985 4ir* Bombing, FHWA, USA

Stewart, R M, Kennedy, B A, 1971 The Role of Slope Stability In the Economics, Design And Operation of Open Pit Mining, Chaplei 2, Stability in Open Pit Mining, C O Brawner and V Mailigan, ed, AME, New York, pp 5-22