TMMOB MADEN MÜHENDİSLERİ ODASI
44. DÖNEM YÖNETİM KURULU
Başkan Ayhan YÜKSEL
II. Başkan Hüseyin Can DOĞAN
Yazman Necmi ERGİN
Sayman Mehmet ÖZYURT
Üye Emre DEMİR
Üye Mehmet ZAMAN
Üye Emra ERGÜZELOĞLU KARATAŞ

BOR ÇALIŞTAYI DÜZENLEME KURULU
Başkan Muammer ÖCAL ETİBANK Eski Genel Müdürü
Üye Ayhan YÜKSEL Maden Mühendisleri Odası Başkanı
Üye Ümit Ragıp ÜNCÜ ETİ PAZARLAMA Eski Genel Müdürü
Üye Ayşen ERTEN Maden Mühendisleri Odası

Tüm Hakları Saklıdır. TMMOB Maden Mühendisleri Odası’nın yazılı izni olmaksızın bu kitap ya da kitabın bir kısmını herhangi bir biçimde yayımlanamaz.

ISBN: 978-605-01-0707-4

Teknik Hazırlık: Maden Mühendisleri Odası
Büyük Sanayi 1. Cad. 80/32 İskitler/ANKARA
Tel / Fax : 312 384 26 85 / 312 341 64 08
İsteme Adresi : TMMOB Maden Mühendisleri Odası
Selanik Caddesi No: 19/4 Kızılay / ANKARA
Tel : 0312 425 10 80 Faks : 0312 417 52 90
İnternet Adresi : www.maden.org.tr
E-Posta : maden@maden.org.tr
BOR ÇALIŞTAYI PROGRAM

AÇILIŞ 09.30-10.15

1. OTURUM 10.15-11.15 TÜRKİYE'İN BOR SERÜVENİ

MODERATÖR Tacidar SEYHAN 22.23. Dönemler Adana Milletvekili

- Bor Madenlerinin 1970’lerdeki Durumu Murat TURAN 20.21.22.23. Dönemler Maden Mühendisleri Odası Yönetim Kurulu Başkanı
- Bor Madenlerinin 1980’lerdeki Durumu Asım KUTLUATA 33.34.35.36. Dönemler Maden Mühendisleri Odası Yönetim Kurulu Başkanı
- Küreselleşme Döneminde Bor Aşkıın SÜZÜK Petrol-İş Sendikası

ÇAY ARASI 11.15-11.30

2. OTURUM 11.30-12.45 SANAYİNİN TUZU BOR

MODERATÖR İlker ERTEM Maden Mühendisleri Odası

- Bor Ürünlerinin Kullanım Alanları ve Günümüz Teknolojilerinde Bor Ümit Ragip ÜNCÜ ETİ PAZARLAMA Eski Genel Müdürü
- 22. Yüzyıl Enerji Sisteminde Bor Dr. Serdar ERKAN ERDES Teknoloji
- Etimaden Ar-Ge Çalışmaları Dr. Murat BİLEN ETİ MADEN Teknoloji Geliştirme Daire Başkanı
- Bor Ürünleri Potansiyel Gelişim Alanları Aşßen ERTEN Maden Mühendisleri Odası
- Bor Sağlık ve Çevre Prof. Dr. Yalçın DUYDU A.Ü. Eczacılık Fakültesi

YEMEK ARASI 12.45-13.45

3. OTURUM 14.00-17.00 BOR POLİTİKALARI VE STRATEJİSİ

MODERATÖR Muammer ÖCAL ETİBANK Eski Genel Müdürü

- Dr. Erdemir KARAKAŞ ETKB Eski Müsteşarı
- Prof. Dr. Nusret BULUTÇU İTÜ Kimya Metalurji Fakültesi
- Dr. Sedat SÜRDEM BOREN Grup Koordinatör V.
- Dr. Orhan YILMAZ ETİ MADEN İşletmeleri Genel Müdürü
- Ayhan YÜKSEL Maden Mühendisleri Odası Başkanı

FORUM 17.00-18.30
KOKTEYL 18.30-20.00
İÇİNDEKİLER

SUNUŞ ... 7
AÇILIŞ KONUŞMALARI .. 11
SAYIN MUAMMER ÖCAL’IN AÇILIŞ KONUŞMASI .. 12
SAYIN AYHAN YÜKSEL’İN AÇILIŞ KONUŞMASI .. 16
SAYIN KEMAL DEĞİRMENDERELİ’NİN AÇILIŞ KONUŞMASI ... 22

I. OTURUM
TÜRKİYE’NİN BOR SERÜVENİ .. 25
BOR MADENLERİNdİN 1970’LERDEKİ DURUMU: Murat TURAN 27
BOR MADENLERİNdİN 1980’LERDEKİ DURUMU: Asım KUTLUATA 32
KÜRESELLEŞME DÖNEMİNDE BOR: Aşkın SÜZÜK ... 35

II. OTURUM
SANAYİNİN TUZU BOR ... 45
BOR ÜRÜNLERİndİN KULLANIM ALANLARI ve
GÜNÜMÜZ TEKNOLOJİLERİNDE BOR: Ümit Ragıp ÜNCÜ ... 47
“22. YÜZYIL ENERJİ SİSTEMİNDE BOR: Dr. Serdar ERKAN .. 58
ETİ MADEN AR-GE ÇALIŞMALARI: Dr. Murat BİLEN ... 64
BOR ÜRÜNLERİndİN POTANSİYEL GELİŞİM ALANLARI: Ayşen ERTEN 68
BOR SAĞLIK VE ÇEVRE: Prof. Dr. Yalçın DUYDU ... 107

III. OTURUM
BOR POLİTİKALARI VE STRATEJİSİ PANELİ ... 117
Dr. Erdemir KARAKAŞ ... 118
Prof. Dr. Nusret BULUTÇU .. 120
Dr. Orhan YILMAZ ... 131
Dr. Sedat SÜRDEM ... 136
Ayhan YÜKSEL .. 143

FORUM .. 153
BOR ÇALIŞTAYI SONUÇ BİLDİRGESİ .. 169
mek; kalkınmayı bu tarzda gerçekleştirmek ve daha yüksek bir gelir düzeyi sağlamak. Bu nedenle; kalkınma modellerini, öncelikle öz kaynaklarına dayandıran ve eksiklerini dış kaynaklarla destekleyebilen ülkeler; kalkınma sürecini istikralı ve güvenli bir şekilde asaçıklamaktır.

Bu bağlamda Türkiye stratejik ömni olan bor madenini taktiksel bir öngörüyle planlanmalı ve işletmelidir. Ülkemizin sahip olduğu yüksek bor rezervinin stratejik bir önem kazanması, bor rezervlerden elde edilecek faydanın ökülttilmesi ile mümkündür. Türkiye’den bor ürünleri alan ülkeler, bundan matka değer yüksek bor ürünlerini üretmekte ve bu ürünlerleri ileri teknolojik ürünlerin kullanarak, ürettikleri matka değer yüksek teknolojik ürünlerini Türkiye’nin de dâhil olduğu pazarlara satmaktadır. Dolayısıyla Türkiye’de bulunan bor madeni hammadde olarak yabancı ülkelerle satılmakta ve bu durum da kaynak aktarımına neden olmaktadır. Oysa diğer ülkeler için hammadde kaynağı olan başka bor madenlerimizde emekli oldukları hallarla hak ettiği konumu ele geçirebilmesi, Türkiye’nin תנ achtercatı değer yüksek çeşitlendirilmiş ürünler üretmek ve bunları ileri teknolojik ürünlerin üretimlerinde kullanması ile mümkünür.

Sanayileşen bir Türkiye’nin değerlandırebileceği maden kaynakları mevcuttur. Ülkemizin gelişmesinde, doğal kaynaklarımızın ekonomik katkısını verimli şekilde sağlayacak ciddi, tutarlı bir sanayi, teknoloji, enerji ve bunlara bağlı olarak madencilik politikasının uygulanmasına ihtiyaç vardır. Sahip olduğumuz yüksek miktar ve kalitedeki bor rezervlerinden sağlanacak faydanın en üst düzeyeye çıkarılabilmesi için katma değerlerin daha yüksek ürünle yönelmekte ve ülkeyizdeki sanayi kurmak büyük önem taşmaktadır. Katma rezervlere sahip olmak kendi başına bir anlam ifade etmemektedir, asıl olan bu rezervlerden sağlanacak faydanın en üst seviyeye çıkarılabilmesinin şartlarını oluşturmuştur.

Odamız yıllardır ısrارla vurgulamıştır,
- Bor Madenleri Özelleştirilemez,
- Borlar Tek Elden Yönetilmelidir,
- AR-GE Faaliyetlerine Önem Verilmelidir,
- Ülkemizde Bor Sanayileri Kurulmalıdır,
- Bor Master Planı Yapılmalıdır,
- Ciddi Bir Madencilik Politikası Uygulanmalıdır.

Hicran YAMAN: Hepinizi saygı ve sevgi ile selamlıyoruz. Maden Mühendisleri Odası tarafından düzenlenen Bor Çalıştayı’na hoş geldiniz. Çalıştayda emeği geçen herkese teşekkürlerimizi sunarız. Öncelikle geçtiğimiz günlerde Soma’da Ermenek’te ve diğer madenlerde maden kazalarında hayatını kaybeden çok kıymetli meslektaşlarımızı ve işçilerimize Allah’tan rahmet diliyoruz. Çalıştayımıza geçmeden önce sizleri Ulu Önder ATATÜRK ve hayatını kaybeden bütün emektaş meslektaşlarınız ve işçileriniz için bir dakikalık saygı duruşu ve ardından İstiklal Marşına davet ediyorum.

Şimdi eski ETİBANK Yönetim Kurulu Başkanı ve Genel Müdürü, eski Başbakanlık Devlet Planlama Teşkilati Koordinasyon Başkanı Sayın Muammer ÖCAL’ı açılış konuşmasını yapmak üzere kürsüye davet ediyorum.
ÇALIŞTAY BAŞKANI
SAYIN MUAMMER ÖÇAL’IN AÇILIŞ KONUŞMASI

Sayın Misafirler, Sayın Milletvekilim,
Hanımfendiler, Beyefendiler, Değerli Meslektaşlarımız,
Bu çalıştayı ziyaretiniz ile onurlandırdığınız için teşekkür ederim. Hoş geldiniz.
Umarım teknik konuları ağırlıklı olan bu günü sıkılmadan geçirirsiniz.

Ülkemizdeki bor mineralleri yatakları, Dünya rezervlerin %72’sini oluşturmuş, kalite bakımından en yüksek oranı haiz, işletmecilik açısından en uygun jeolojik yapıda oluşmuş, her çeşit bor minerali bulunan bu rezervlerden azami faydayı sağlamakla yollarca engel olunmak istendi. Bu engeller kısmen aşılı fakat engellemeler eskil değiştirilerek devam ediyor. Tekrar ediyorum, bu engellemeler eskil değiştirilerek devam ediyor.

1970’li yıllarda beri zamanın Maden Mühendisleri Odası yöneticileri, ETİBANK’ın cefakâr mühendisleri ve Enerji ve Tabi Kaynaklar Bakanlığı yetkilileri bu mücadeleyi içinde olmuştur ve bugün ETİ MADEN’in bulunduğu konuma ulaşılmasını sağlamışlardır.

Kırka’da yılda 160.000 ton üretim kapasitesi ile başlayan, beş sulu ilk rafine boraks tesisi zaman içerisinde aksaklıklar giderek yenileri eklenmiş ve bugün yılda 840.000 tonlık üretimine ulaşılmıştır. O zaman 80 milyon dolar olan ihraç ise 2013’te 800 milyon doları bulmuştur. Bütün engellemeleri ETİBANK’un elemanları aşmış, teknoloji genişlemiş ve 150 yıllık birikime sahip rakip firmayı geride bırakabilmştir.

Birinci rafine bor tesisi yapılmırken, tesisin çalısmayacağıını bildiren raporlar yazdırmış, tesis için gerekli makinelerin getirilmesi engellenmiş, tesisin montajı esnasında yanlış bağlantılar yapılmıştır.

Bu sıkıntıları aşmak için fedakarca çalışanlara saygılarımı sunuyor ve vefat edenlere Allah’tan rahmet diliyorum.

Hanımfendiler, Beyefendiler,

Bor minerallerinin hak ettiği ölçüde kazanılmamasının üçüncü aşaması ise özel bor ürünleri ile bora dayalı sanayi ürünleri yatırımlarını başlatmak ve bora dayalı sanayiyi teşvik etmek olacaktır. Bunun için bir adım 60 milyar olduğu söylenmektedir. Bu şekilde çıkarılan rafine ürünün Türkiye’de dağıtılmaması mümkün olacak ve rafine bor ürünleri ihracatı dışarıya satılmak durumundadır. Toptan ticari hacminin 60 milyar olduğu söylenmektedir.

Bu şekilde çıkarılan rafine ürününün Türkiye’de değerlendirilmesi mümkün olacak ve rafine bor ürünleri ihracatı dışarıya satılmak durumundadır. Toptan ticari hacminin 60 milyar olduğu söylenmektedir.

Bu yatırımlar, özel bor ürünleri ve bora dayalı sanayi ürünleri başlıklı altında toplanabilir. Çinko borat, sodyum bor hidrit, bor karbür, bor nitrür, disodyum oktaborat tetrahidrat, amonyum penta borat özel bor ürünleri oluşturur.

Bora dayalı sanayi ürünleri olarak da; tekstil fiberglas, borosilikat camlar, şırıncı, sabun, deterjan belirtilebilir. Bu yatırımın yapılmaması halinde tonu 400-700 dolar olarak ihracatı yapılan ürün, farklı ürün olarak tonu bin dolarla ifade eden değerleri bulabilecektir.

Yeni bir sayfa açmak isteyen genç girişimcilerin bu konulara yoğunlaşmalarını bekliyorum. Kat satarak para kazanmak bir devamlılık arz etmez. Yeni konulara yönelmek ve var olan bir değerin devamlılık sağlayarak yatırım dönüştürmek
hem kendileri ve hem de ülke için yapabilecek en kutsal hizmettir.

İziniz ile konunun bir başka boyutuna değineceğim. Basından öğrendiğimize göre, Birleşmiş Milletler iklim uzmanları, petrol ve doğalgaz gibi fosil yakıtların kullanımına 90 yıl için de son verilmemesi halinde “Dünya’nın geri dönülmeyi biçimde zarar göreceği” uyarısında bulunmuştur.

Bu nedenle 2100 yılına kadar fosil yakıtların kullanımına son verilmesi gerektiğini vurgulanmış, bu görüşler Birleşmiş Milletlere bağlı hükümetler arası iklim değişikliği (IPCC) raporunda dile getirilmiştir.

Diğer yandan Sayın TABAKOĞLU, KURTULUŞ ve TÜRE tarafından kaleme alınan bir yazida, “Bor minerali petrol doğalgaz kadar STRATEJİK ÖNEME sahiptir” denilmiş ve hidrojen taşıyıcısı olan bor hidrürün satışı fiyatının, toz halindeki 50 dolar/kg olduğu belirtilmiştir. Ancak bazı araştırmacıların önümüzdeki 5 yılda fiyatın 1 dolar/kg hahta 0,55 dolar/kg gerileceğini öne sürdüklerine değinilmiştir. Böylece bor hidrürün fosil yakıtların yerine geçebilceği belirtilmektedir. Sodyum bor hidrürün çözeltilerinden hidrojen üretimi avantajları ise şu şekilde sıralanmıştır:

- Sodyum bor hidrür çözeltilerinin uzun süre kararlıdır.
- Sodyum bor hidrür çözeltileri yanmaz.
- Sodyum bor hidrürün volümetrik ve gravimetrik hidrojen depolama kapasitesi yüksektir.
- Hidrojen üretim hızı kolaylıkla kontrol edilebilir.
- Reaksiyon yan ürünü sodyummetaborat geri dönüştülmüştür.

Bu bilgiler bor mineralleri üzerinde daha çok durulması gerektiğini ve geliştirmesi için her düzeyde teşvik edilmesinin önemini vurgulamaktadır ve tekrardan diyorım ki “BOR MINERALLERI STRATEJİK BİR ÖZELLİĞE SAHIPTİR.”

Genç meslektaşlıklarımız, sizlerin her biri pırlanta değerindedir. Temennim bu pırlantaları fark eden, işleyen ve geliştirilen yöneticilerin emrinde çalışmanızı. Beni dinleme nezaketinde bulunan herkese saygı ve sevgi ile kucaklıyorum, teşekkür ediyorum.

Hicran YAMAN: Yine açık konuşmasını yapması için Maden Mühendisleri Odası Başkanı Sayın Ayhan YÜKSELI’i kürsüye davet ediyorum.
Sayın Vekillerim,
Sayın Genel Müdürlerim,
Saygıdeğer Başkanlarım, Meslektaşlarım,
Değerli Konuklar ve Basın Mensupları,

Yarın 20 Aralık 2014 Odamızın kuruluşunun 60. yıldönümü olup dolu dolu 60 onurlu yılın onurunu ve gururunu yaşamaktayız. Odamızın kuruluşunun 60. yılı nedeniyle yönetim kurulumuz tarafından düzenlenen Bor Çalıştayı'na hoş geldiniz. Hepinizi Yönetim Kurulu ve şahsim adına saygı ile selamlıyorum.

Saygıdeğer Konuklar;

Bilindiği üzere Dünya üzerinde bulunan doğal kaynakların dengesiz bir şekilde dağılmış olması, bu kaynaklar üzerindeki uluslararası arası çekişmeyi de beraberinde getirmiştir. Doğal kaynaklar ülkelerin stratejik konumlarını da ortaya çıkartmaktadır.

Bor, stratejik bir madendir. Bor minerallerinin, son derece özel kimyasal yapıları nedeniyle, hammadde, rafine ürün ve nihai ürün şeklinde, büyük çoğunlukta alternatif olmak üzere, sayısun kullanım alanı mevcuttur. Bor mineralleri, ilave edildikleri malzemelerin katma değerlerini olağanüstü yükseltmekte, bu nedenle sanayinin tuzu olarak adlandırılmaktadır. Gelişen teknolojiler, bor kullanımı ve bor minerallerine olan bağlılığı artırılmaktadır. Hammadde, yarı ma-
mul ve mamul madde olarak, cam, porselen, seramik, fiber glass, metalurji, elektronik, tip, enerji, tarım, havacılık, savunma gibi çok farklı sektörlerde kullanılan bor mineralleri sanayinin vazgeçilmez hammaddelerindendir. Özellikle uçak ve uzay sanayilerinde, yapı elemanı ve yakıt olarak kullanımları söz konusudur. Bor minerallerinin, diğer yakıtlarla karşılaştırıldığında yüksek yoğunlukta enerjiye sahip olmaları nedeniyle, yakıt olarak da kullanılanları konusunda yapılan araştırmalar bütün hızıyla sürürlüktedir ve uygulamaları da günümüzde ortaya konmaktadır.

Türkiye Dünya bor madeni rezervinin %72’sine sahiptir. Bu özelliği ile Dünya ham bor madeni üretiminde birinci sıraya yer almaktadır.rade羟亞難ェγ主力に-presented, yerine getirmiş, pazarında belli bir noktaya ulaşmış ve ham-rafine ve kimyasal bor ürünlerini üretmesine karşılobilecek bir uluslararası şirket kalmayacaktır. Bu bağlamda Türkiye stratejik önemi olan bor madeninin taktiksel bir öngörüyle planlanmış ve işletmelidir. Ülkemizin sahip olduğu yüksek bor rezervinin stratejik bir önem kazanması, bu rezervlerden en çok ulusal faydanın yükseltılması ile mümkünür.

Saygıdeğer Katılımcılar;

2172 sayılı Kanun ile yetme, işletme ve pazarlama teklinin elde edildiği 36 yıldan bugüne kadar devlet kamu eli ile üzerine düşen görevi yerine getirmiş, pazarda belli bir noktaya ulaşmış ve ham-rafine ve kimyasal bor ürünlerini üretimi
konusunda ulaşması gereken noktaya yaklaşılmıştır. İçinde bulunduğumuz Dün-
ya birinci bor türevleri piyasasının bugün için toplam 2-2,5 milyar Amerikan
Dolari olduğu düşünülebilir. Türkiye'nin bugün için bu pazardowna payı 2013 yılı
itibari ile 850 milyon dolar civarında seyretmektedir. Bor Madenlerini işleten
ETİ MADEN “altın yumurtlayan bir tavuktur.”

Kamu tekelinden vazgeçilmesi durumunda özel firmaların daha rasyonel çali-
şacağı ve kazancın artacağı varsayımları hiç bir şekilde doğru değildir, çünkü bor
işletmeciliğinde ortalama malıyetler ve ortalama satış fiyatları arasındaki oran
kamu lehine çok iyi bir orandadır. Özel sektör işletmeciliğinin bu oranı yanı kar
payını artırmak için işçilken kısman yani emek sömürüşü yapma dışında yapa-
 bileceği herhangi bir şey yoktur çünkü taşeronlaşma yöntemi ile işçilik malıyet-
lerini %8 seviyelerine kadar düşürmüştür.

Bor özelleştirildiği takdirde özel şirketler arasındaki rekabet 1978 öncesinde ol-
duğu gibi fiyatların ve toplam ülke kazancının 10 kat düşmesine neden olacaktır.
Kaldı ki, yerli madencilik şirketlerinin uluslararası maden tekerlerinin karşısında
bununca çekirdek güçleri bulunmadığından, bor rezervlerinin kısa sürede söz ko-
nusu tekerlerin eline geçmesi de kaçınılmazdır.

Bor konusunun Türkiye’de bir tabu haline getirildiğinden bahsedilerek, bu yüzden “bor”lu sanayilerin gelişiminin devlet tarafından engellendiğini savunanlar
ille de bor madenlerinin özelleştirilmesini, eski sahipleri ise ruhsatlarının geri
ıade edilmesini isteye gelmişlerdir. Dünya’daki en büyük bor rezervine sahip
ülke olmamıza rağmen 1980 öncesine kadar dizginlerimiz hep yabancıların elin-
de kalmış, hep onların oynadıkları oyunlarda bize verilen roller üstlenilmiştir.

21. yüzyılın başında yine aynı durumdayız değil bir şey yok. Ümidimiz “Bor
madenlerimizin özel sektör mü devlet sektörü mü işletsin?” konusundaki kısr
artışmaların bize değil yabancılar yaradığı herkes tarafından bir kez daha an-
laşmasını. Konu borların özelleştirilip özelleştirilmesi noktasında tikatılması
yerine, Türkiye’de bor teknolojilerinin ve sanayinin gelişiminin nasıl sağlanaca-
ğı olmalıdır.

Bor mineralleri; çok yaygın kullanılan ileri teknoloji hammaddesi olması
nedeniyle, ulusal sanayimizin geliştirilmesinde lokomotif olabilecek özellikleri bir
hammadde. Ulusal sanayimizde şeffaf işbirlikleri yapılarak, bor madenlerinin
çekirdek sanayi olduğu üç ürünlerin üretimi ve dolayısıyla daha fazla katma
deger yaratılması ülkemiz açısından yararlı görülmektedir. Borlara dayalı, yeni
ürün ve teknolojilerin üretilmesi için; daha fazla AR-GE çalışmalarının destek-
lenmesi ve borlar için özel bir TEKNOKENT’in kurulması ülkemizde daha fazla
katma değer yaratması için acil ihtiyaç görülmektedir. Ulusal sanayimizde geli-
ştirilecek gerçekçi, bilimsel ve teknolojiye dayalı Ulusal Bor Politikaları için daha
fazla zaman kaybedilmemelidir. Dolayısıyla; bor ürünlerinde buluşların artırıl-
ası ve teknolojik inovasyonların geliştirilmesi için gerekli teşvik verilmelidir.
İleri teknoloji malzemelerinin pek çoğu ya bor esaslıdır ya da bor katkılıdır. Söz konusu malzemelerin üretimine de elde edilen katma değer ham veya rafine bor tuzlarının fiyatını yer yer 10’a, 100’e ve hatta 1000’e katlamaktadır. Bor cevheri, konsantresi veya rafine ürünleri satarak zengin ülke olamayacağımız apaçıkta.

Türkiye’de pek çok bor uç ürününün üretim şifrelerinin çözülebilmesi için devlet mülkiyetindeki bor madenlerinin devlet eliyle çıkarılmasıyla sağlanan kamu gelirlerinin önemli bir kısmının bor uç ürünlerine yönelik araştırma-geliştirme projelerine aktarılması, katma değeri yüksek ürünler ihraç edebilmenin en rasyonel ön adımı olacaktır.

Değerli Konuklar;

Sonuç olarak,

• Gelişen teknolojiler, bugün sanayinin tuzu olarak adlandırılan “bor’un kullanımını ve bağımlılığını artırmakta ve borun stratejik mineral olma özelliği giderek daha da belirginleşmektedir.

• Ülkemizin gelişmesinde, doğal kaynaklarımızın ekonomik katkısını verimli şekilde sağlayacak ciddi, tutarlı bir sanayi, teknoloji, enerji ve bunlara bağlı olarak madencilik politikasının uygulanmasına ihtiyaç vardır.

• Büyük rezervlere sahip olmak kendi başına bir anlam ifade etmemektedir, asıl olan bunun burun stratejik bir önemi olmaktır. Bu noktada, sahip olduğumuz yüksek miktar ve kalitedeki bor tuzlarının faydalarını daha yüksek ürünlerde ve ülkenizde bor sanayi kurarak büyük önem taşımaktadır. ABD, Avrupa, Japonya, Çin gibi ülkeler için bor stratejik önemi sahibi bir ülkedir. O halde, Türkiye bu güç odaklarının duyarlılığını iyi analiz edip, strateji ve taktiklerini planlarken ortak çıkarlar çerçevesinde kendi çıkarlarını koruyan en uygun kesişim alanlarını bulup uygulamaya koymak durumundadır.

• Gelişmek ve refah seviyesini yükseltmek için, Türkiye’nin ulusal inovasyon konusunda yetkinleşmesinden başka çözümü yoktur.

1978 yılına kadar yerli ve yabancı özel şirketler eliyle işletilen bor madenleri, bu tarihte 2172 sayılı Kanun ile ETİBANK’a (bugün ETİ MADEN) devredilmiştir. 1983 yılında ise, 2840 sayılı Kanun ile bor tuzlarının aranması ve işletilmesinin devlet eliyle yapılacağı hükme bağlanmıştır. 2004 yılında 3213 sayılı Maden Kanununun 49. Maddesinde yapılan bir değişiklik ile “Kanunun yürürlük tarihini...

Devletçe işletilen bor madenlerinin özelleştirilerek parçalanması rekabeti doğuracak ve bu parçalara sahip olacak şirketlerin Dünya pazarlarında geçişte olduğu gibi birbirleri ile rekabete girmeleri sonucu satış fiyatlarında önemli düşüşler görülecektir. Bu anlamda ülkemizin bor ihracat gelirleri de aynı ölçüde gerilecektir. Ancak, sivil toplum örgütlerimizin ve kamuoyunun duyarlılığı sayesinde henüz istediklerine ulaşamayan belli kesimlerin vazgeçmedikleri bu talepleri ile ilgili olarak 2840 sayılı Kanunda yapılması istenen değişikliklerin bir kanun teklifi olarak TBMM başkanlığında beklediği unutulmamalıdır.

Devletçe işletilen bor madenlerinin özelleştirilerek parçalanması rekabeti doğuracak ve bu parçalara sahip olacak şirketlerin Dünya pazarlarında geçişte olduğu gibi birbirleri ile rekabete girmeleri sonucu satış fiyatlarında önemli düşüşler görülecektir. Bu anlamda ülkemizin bor ihracat gelirleri de aynı ölçüde gerilecektir. Ancak, sivil toplum örgütlerimizin ve kamuoyunun duyarlılığı sayesinde henüz istediklerine ulaşamayan belli kesimlerin vazgeçmedikleri bu talepleri ile ilgili olarak 2840 sayılı Kanunda yapılması istenen değişikliklerin bir kanun teklifi olarak TBMM başkanlığında beklediği unutulmamalıdır.

Devletçe işletilen bor madenlerinin özelleştirilerek parçalanması rekabeti doğuracak ve bu parçalara sahip olacak şirketlerin Dünya pazarlarında geçişte olduğu gibi birbirleri ile rekabete girmeleri sonucu satış fiyatlarında önemli düşüşler görülecektir. Bu anlamda ülkemizin bor ihracat gelirleri de aynı ölçüde gerilecektir. Ancak, sivil toplum örgütlerimizin ve kamuoyunun duyarlılığı sayesinde henüz istediklerine ulaşamayan belli kesimlerin vazgeçmedikleri bu talepleri ile ilgili olarak 2840 sayılı Kanunda yapılması istenen değişikliklerin bir kanun teklifi olarak TBMM başkanlığında beklediği unutulmamalıdır.

Özellikle borlar, kar payı çok yüksek madenlerimiz olduğundan günlük ve dar çerçevede ele alınmamalı, ülkemiz ve uluslararası çıkarlarımızın ön planda tutulmalardır. Bu bağlamda bor madenlerimiz basit oyunlara alet edilmemeli ve borların özelleştirilmesi kesinlikle düşünülmemelidir. 2840 sayılı Kanundaki «Bor Madenleri Devletçe İşletilecektr» hükmü asla değiştirilmemelidir. Ruhsatlar, fiyatlar belirleme ve pazar politikaları kamuda kalmakla birlikte yine de özel sektör ile işbirliği yapmaya çatlat aramak özellikleшимenin ve kaynakları aktaranın bir diğer biçimi olarak çıkan borların özelleştirilmesi ve kontrol edilmesini kaçınılmaz bir son olarak karşimiza getirecektir.

Özellikle borlar, kar payı çok yüksek madenlerimiz olduğundan günlük ve dar çerçevede ele alınmamalı, ülkemiz ve uluslararası çıkarlarımızın ön planda tutulmalardır. Bu bağlamda bor madenlerimiz basit oyunlara alet edilmemeli ve borların özelleştirilmesi kesinlikle düşünülmemelidir. 2840 sayılı Kanundaki «Bor Madenleri Devletçe İşletilecektr» hükmü asla değiştirilmemelidir. Ruhsatlar, fiyatlar belirleme ve pazar politikaları kamuda kalmakla birlikte yine de özel sektör ile işbirliği yapmaya çatlat aramak özellikleшимenin ve kaynakları aktaranın bir diğer biçimi olarak çıkan borların özelleştirilmesi ve kontrol edilmesini kaçınılmaz bir son olarak karşimiza getirecektir.

Saygıdeğer Katılımcılar, Değerli Konuklar,
TMMOB ve Birliğimize bağlı 24 Oda ile birlikte MADEN MÜHENDİSLERİ
ODASı olarak 60 yılındır olduğu gibi bundan sonra da doğruları, doğru bildik- lerimizi ve inandıklarımızı söylemeye devam edeceğiz. 2840 sayılı Kanunda yapılımak istenen değişikliklere ve oynanan oyunlara karşı nasıl mücadele ettiysek TMMOB’u parçalama yasasına karşı da aynı mücadeleyi vermekten geri kalma- yacağız.

Daima bilimden, emekten, halktan ve hukuktan yana olacağımı ve bu alanda mücadele edeceğimizi bir kez daha deklere etmenin mutluluğunu ve onurunu ya- şarken çalıştayımızın ülkemize, sektörümüze, mesleğimize ve meslektaşlarımızı katkısı sağlaması dileğiyle çalıştayımızın düzenlenmesinde emeği geçen düzenleme kurulu na, odamız çalışanlarına ve tüm üyelerimize teşekkür ederim. Saygılarımla.

Hicran Yaman: Yine açılış konuşmasını yapması için Cumhuriyet Halk Partisi Edirne Milletvekili, Maden Mühendisi, Sayın Kemal DEĞIRMENDERELİYİ davet ediyorum.

Değerli Arkadaşlar, bugün Bor Çalıştayı nedeni ile buradayız. Her iki konuşmacı da olağanüstü detaylı bordaki imkanlarınızı ve bu yapacakımız soraktırında yapılan gerekleri gayet net olarak ortaya koyular. Ben de buraya çıkmış iken biraz birkaç bilgiyi de paylaşmak istiyorum. Politikacılar mikrofonu bulunca böyle konuşurlar. Dün mecliste bütçeyesiyle patent enstitüsü üzerinde bir konuşma yapmıştım, daha önce de bu konuda bir konuşma yapmıştım. Şimdi bu konuda iyi niyetlerle kuruluşu ve bu yapacağımız bor sektörünün gençlikle bir kabuk değişikliği ile yeni bir atağa geçirmemiz gerektiğini düşünüyorum.

önemli olan da bunların ürün haline dönüşmesini sağlayacak teşvikleri alt yapıyı oluştur mamız. Bu anlamda da “cari açığımız var” diyor isek, efendim “dişa bağımlılığımız her gün artırıyor” diyor isek, bunların giderilmesinde en önemli katkıyı sağlayacak bor ürünümüzün üzerinde yapılacak çalışmalarında belki bugün değil ama önümüzdeki dönemlerde önümüzdeki 10 yıllarda, bize çok daha nefes aldıracak bir alt yapı oluşturacaktır. Ben de bu çalışmanın bu anlamda çok faydali olacağını ve yeni bir soluk getireceğini bor ile ilgili gelecek vizyonda yeni bir soluk getireceğine inanıyorum bu duygu ve düşünceler ile hepinizi saygı ile selamlıyorum.
I. OTURUM
TÜRKİYE’NİN BOR SERÜVENİ

MODERATÖR
Tacidar SEYHAN
22.23. Dönem Adana Milletvekili

Murat TURAN
20.21.22.23. Dönem
Maden Mühendisleri Odası Yönetim Kurulu Başkanı
“Bor Madenlerinin 1970’lerdeki Durumu”

Asım KUTLUATA
33.34.35.36. Dönem
Maden Mühendisleri Odası Yönetim Kurulu Başkanı
“Bor Madenlerinin 1980’lerdeki Durumu”

Aşkın SÜZÜK
Petrol-İş Sendikası
“Küreselleşme Döneminde Bor”
Hicran YAMAN: Çalıştayımız üç oturumdan oluşmaktadır. Birinci oturumumuz konusu “Türkiye’nin Bor Serüveni” 22. ve 23. dönem Adana milletvekili Sayın Tacidar Seyhan’ı moderatörlük yapmak üzere birinci oturumumuza davet ediyorum.

Konuşmacılarımızdan 33-36. dönemler arası Maden Mühendisleri Odası Yönetim Kurulu Başkanı Sayın Asım KUTLUATA’yı davet ediyorum.

Konuşmacılarımızdan Petrol-İş Sendikası Yönetiminden Sayın Aşkın SÜZÜK’ü davet ediyorum.

Ben meseleyi şöyle bakıyorum değerli arkadaşlar, madende önemli olan sürdürebilirlik. Sürdürebilirlikte tek amacımız bizden sonra çocuklarımızın hakkı olan madenleri verimli doğal kaynakları kendi içerisinde işleyerek üç ürune dönüştüren akıcı bilime dayalı bir maden politikasını aktifleştirmektir. Biz bunu yapabilirdik mi? Zannediyoruz dönemimler içerisinde özellikle 22. döneminde bir Maden Kanunu geldi öne, büyük bir özelleştirme çabası vardı, her tarafın sarılmış kuşatılmıştı. Birkaç neden söylenebilir deniliyordu ki arkadaşlarınız bu çıkartmak için “Bunun %73’ü bizde, Amerika’nın payı çok düşük ama Dünyada bor piyasasını Amerika Birleşik Devletleri tutuyor.” Arkadaşlarınızın bu çok cevaplandı ama yine de ben söylemek istiyorum değerli arkadaşlar, bor piyasasını

I. OTURUM
TÜRKİYE’NİN BOR SERÜVENİ

29

I. OTURUM TÜRKİYE’NİN BOR SERÜVENİ

re toplam 552 milyon para ödendi. Öddenen bu para işletmcilerin yapmış olduğu yatırımın karşılığı olarak hesaplandı. Bilindiği gibi Anayasanın 130.maddesi gereği madenler devletin hüküm ve tasarrufu altında bulunduğundan rezervler dikkate alınması ve rezerv için para ödenmemiştir.

- İlk devleteştirme ya da millileştirme operasyonu 11 Mayıs 1936 tarihinde Ergani Bakır Madeni hisselerinin yabancılardan geri alınması yani Ergani Bakır’ın devleteştirilmesi
- İkinci olarak Ereğli Kömürleri hisse senetlerinin 31 Mart 1940 tarihinde Zonguldak havzasındaki geri kalan hisselerin tümünün alınarak Zonguldak havzasının tamamen devleteştirilmesi olaydır.

1. Sahaları alacak kurumlar (ETİBANK, TKİ, TDÇİ) hazırlıklı değildi ve kendilerini yeni organizasyon için hazırlayamamışlardı.
2. Geri alınacak saha işletmecileri ellerinden alınacak sahayı adete yağmamışlar, bunlar için bir önlem alınmamıştı.
3. Siyasi hemen hemen tüm gruplar bu uygulamaya karşı olduklarını ifade ederek operasyonun sağlıklı bir yürümesine engel olmuşlardır.
5. Bütün bunlardan daha önemlisi 1979 sonunda yapılan seçimler sonucu iktidar değişmiş, yeni gelen hükümet başlangıçtan bu yana söylediğim gibi uygulamaları askıya almış ve durdurmuştur.

Bu eleştiriyi yapmak durumundayız.

1979 yılı iktidar değişmiş ve ilk icraatı 19 Kasım 1979 tarihli Başbakanlık genelgesi ile Bor İşletmelerindeki tüm uygulamalar durdurulmuştur. Başbakanlığın bu

Sanıyorum en azından şu soruyu siyasilerimize sorma hakkına sahibiz. Başından beri borların devletleştirmesine karşıydınız ve her ortamda iktidara gelince bu sahaları eski işletmecilerine iade edeceğiniizi sürekli yenilediniz. Peki, 35 yıldır (Kimler geldi, kimler geçti) neden iade etmediniz? Edemezsiniz çünkü çok büyük rant var.

Sayın Başkan ayrılan kısa süreye uyduğumu sanıyorum. Detaylara girmeden 70’li yılları özetle aktarmaya çalıştım. Size ve dinleyenlerimize beni sabırla dinlediğiniz için teşekkür ediyorum.

Tacidar SEYHAN: Sayın Murat TURAN’a çok teşekkür ediyorum. Sayın TURAN kamulaştırmanın ilk kez yapılmadığını daha önce de kamuda önemli kamulaştırmalar yapıldığını hatta Türkiye’nin kaynağına ihtiyacı olduğu dönemlerde dahi stratejik gördüğü alanlarda kamulaştırmaya gittiğini anlatmayı ve kamulaştırmacı öncesi 45-50 dolar arasında olan bor rezervinin kamulaştırma sonrası satış fiyatının 300 dolarla ulaştığını maliyetinin çok üzerinde kaynağıın değerlendirildiğini söyledi. Ve bunun dışında önemli olanın kaynakların bir an önce satılması değil verimli doğru yerde, doğru alanda kullanılması olduğunu bize belirtti.

Değerli arkadaşlarımız buradan zannederim arkadaşlarınız da bende bundan çekmeyi elbette Türkiye’de özel sektör olacak, özel sektör çalışacaktır. Ama o dönemleri ben hatırlıyorum emin olun ben devletten bor alıp ham olarak isleyen bir fabrikaya girdim, devlete bildirimi 5 bin tondu ve istediği 250 bin tondu fakat gittiğimizde fabrikanın kapasitesinin 5 bin ton işleme kapasitesinde olduğunu gördük ve ben yurt dışında açılmış küyularla borları stoklayan devletler gördüüm. Bu, borun ne kadar stratejik olduğunu hissetmemde daha büyük bir dönemsel aşama oldu benim için bu nedenle ben stratejik alanlarda kamunun doğru, araştırmaya dönük bunlardan daha fazla yaralanmaya dönük ama çocuklarımızı da geleceği de doğru planlayan bir yerde olmasını çok arzu ediyorum. Şimdi sözü

Hepimizin bildiği gibi sanayi devrimi, 1750-1850’li yıllar arasında İngiltere’de başlıyor ve gerçekleşiyor. 1850’li yıllarda, sanayileşmeyi gerçekleştiren ülkeler ham madde kaynaklarına sahip olma anlayışı ile Osmanlı İmparatorluğu da dâhil olmak üzere az gelişmiş ülkeler karşısında diz çöküşü yapmaktadır.

Daha sonra Danışma Meclisi tarafından 13 Haziran 1983 tarihinde çıkarılan
I. OTURUM
TÜRKİYE’NİN BOR SERÜVENİ

kelimesinin anlamı “Genel olarak Dünyada ya da bir ülkede az bulunan, oluşum itibarı ile bir bölgede, bir ülkede yoğunlaşmış, kullanımı diğer sanayi dallarını doğrudan ilgilendiren, ikame edilme olanakları az, bir ülke ya da bir bölge için özel ekonomik önemi taşıyan, askeri amaçlar için kullanım özelliği olan madenler” olarak tanımlanabilir. Bor ne kadar bunun içindedir tartışılabilir, ama bu kaynağın %72’sinin ülkemizde olması çok önemlidir. Bu ülkemiz için her şeydir gibi yaklaştığını çok da doğru bir yaklaşım olduğunu düşünmekteyiz. Önemli bir avantaja sahibiz ancak akıllı politikalarla değerlendirebilirsek ki maalesef değerlendirememekteyiz. Çünkü gerekenler diğer madencilik alanlarında da yapılmadığı gibi borda da yapılmamıştır işte hepimiz biliyoruz.

Türkiye’deki madencilik sektörü çok ciddi sıkıntılar yaşamıyor. Görдумüm kadardanla bir yerde bir maden bulunduğunu geçmiştik o yörenin insani sevinilirdi ama bugün büyük tepkiler olduğumaktadır. Bu noktaya neden geldik. Çevre ile barışık ve yöre insanın benimsediği üretimi nasıl gerçekleştirebiliriz. Bunun ciddi şekilde tartışılması gerekmektedir. Yil içerisinde meydana gelen maden facialisının yarattığı etki ile netimler artırmış ve birçok maden sahası kapatılmıştır. Ancak kaza olduğunda değil, projeye uygun olmayan ürünlerin yapılması iyi bir denetim ya-
OTURUM
TÜRKİYE’NİN BOR SERÜVENİ

I. OTURUM

TÜRKİYE’NİN BOR SERÜVENİ

Bilyorsunuz, Türkiye’nin küreselleşme sürecinde Dünya ekonomisi ile entegrasyonunda 24 Ocak Kararları önemli bir milat oldu. Hemen arkasından bu kararların uygulanması için 12 Eylül Darbesi yapıldı. 24 Ocak Kararlarının en önemli unsurları, yabancı sermayenin teşvik edilmesi, dış ticarette serbestleme ve daha önemli ekonomide devletin rolünün küçültülmesiydi. Küresel piyasalara enteg-
rasyon sürecine damgasını vuran ise özelleştirme ve serbestleştirmeye politikaları oldu. Aynı süreç, bor varlıklarımız için de söz konusuveysidır.

Örneğin, 1950’li yıllarda ülkedeki ruhsatları elinde bulunduran Borax Consolidated Ltd. Türkiye’deki üretimini,Türkiye’nin başka yerlerindeki yataklarının kullanımda durumu ile çıkarılmasına uygun fiyat ve satış koşulları uyaranca önce düşürmüştür, sonra durdurmuştur.

Burdan hepimizin bildiği ama sıralamak istediğiniz bazı örnekler var. Bor madenlerimizin ETİ MADEN eli ile yani kamu eli ile işletilmesi sonucunda Dünya
bor pazarında geldiğimiz yerin altını bir kez daha çizmek istiyorum.

Türkiye bor rezervlerinde Dünyada %73’lük bir pay ile tartışmasız ilk sıradadır. Dünya bor üretim kapasitesinde Türkiye 1,1 milyon ton (B₂O₃) ile %45’lik bir üretim kapasitesine sahip. Dünya bor pazarında Türkiye bu rezervleri tek başına %47’sini gerçekleştirmiştir. Dünya bor pazarında, %47’lik pay ile ETİ MADEN yine tartışmasız lider durumda. İkinci sırada RT Borax %25 pay ile ETİ MADEN’i izliyor. Görüyor-sunuz, iki şirket dünyada toplam %72 paya sahip. Bu da bor pazarının niteliğini ortaya koymaya yetiyor.

Bor piyasasında bor pazarında ETİ MADEN’in en büyük rakibi RT Borax. Veriler, 2005 yılından itibaren ETİ MADEN’in Dünya pazarında liderliği eline geçirdiğini gösteriyor ve ETİ MADEN’in satışları artış eğilimindeken RT Borax’in payı sürekli düşüyor. Hal böyleyken, Türkiye’de hükümetler bor madenlerini özeleştirmeye çalışıyor.

Bor madenlerine ilişkin, 1980’li yıllarda itibaren gündeme gelen özellikleme girişimlerini satır başlarıyla aktarmak istiyoruz. 1978’den çıkarılan 2172 sayılı Yasa uyarınca özel sektörün elindeki 55 bor sahasından 9’u devlete geçmiş, 7’sinin işlemi tamamlanamamış ve 39’u üzerinde hiçbir işlem yapılmamıştır. 24 Ocak Kararlarının ardından 5 Haziran 1980 tarihinde alınan Bakanlar Kurulu Kararı ile önceki devleteştirme kararları yürürlükten kaldırılmaya ve ruhsat sa-

BOR ÇALIŞTAYI 2014

DEN’de asıl iş olan kırmı, eleme, AR-GE faaliyetleri gibi bazı işler ihale yoluya hizmet alıнима konu edilmiş istendi. Bu girişime karşı Petrol-İş’in açtığı davada Danıştay, düzenleneminin 2840 sayılı Kanun’a aykırılaştırıldığına hükmederek yürütmeni durdurdu.

Bu aralar ismi ETİ MADEN olan kurumun 21 işletmeinden kala kala 4 Bor işletme kalmış. Yani koskoca ETİBANK yok olmuş.

Alüminyum tesisleri, Bakır İşletmeleri, Ferrokrom İşletmeleri, Krom İşletmeleri, Kurşun Çinko İşletmeleri, Fosfat İşletmesi, Boksit, Perlit, Küükürt İşletmeleri, Civa İşletmeleri, Mermer İşletmesi, Volfram İşletmesi, Eti Gümüş İşletmesi... Ne-

Saygıdeğer izleyiciler; Sizlere bor serüveninin 70’li yıllarını aktarırken, uzun soluklu olan bu uğraşı emeği geçenleri kısmen ve benim anımsayabildim ölçüde aktarmaya çalıştım. Doğaldır ki benim anımsayabildim ölçüde aktarmaya çalıştım. Doğaldır ki benim bilmediğim veya tanımadığım, ondan da öte ön plana çıkmamış nice isimsiz arkadaşlarımız vardır. Onlardan özür diliyor ve beni bağışlamalarını istiyorum.

Asım KUTLUATA: Teşekkürler Başkan. Ben, bor madenlerinin mülkiyeti ile ilgili sorun olduğunu düşünüyoruz. Bu konu yeterince tartışıldı. Ekonomik olarak her yönü ile borların kamu elinde, yanı ETİ MADEN işletmelerinin elinde kalmasının doğru olduğunu düşünüyoruz. Özel sektörün, ham madde üretiminde değil de teknoloji ve sanayide ortak olmasının doğru olduğunu düşünüyoruz. Bu konu tartışıma gireceğim olmasından da düşünüyoruz. Türkiye, sanayileşmediği için biz hala konuyu ham madde, konsantre ve rafine ürün boyutlarında

Tacidar SEYHAN: Sayın KUTLUATAYA teşekkür ediyoruz. Sayın SÜZÜK bir mesaj aldım. Deniliyordu ki “bin yıl yetecek kadar bor sadece Türkiye rezerv alanlarında var. İkame bir maden çıkarırsa bu boru ne yapacaksınız evinize mı götüreceksiniz” diye bir mesaj atmış, değerli bir arkadaşımız ne diyorsunuz?

Kemal GÜNAYDIN: Metalurji yüksek mühendisiyim. Hiçbir arkadaşımıza soru sormayacağım. Yalnız bor konusunda, Türkiye’nin en büyük eksiklerinden birisi olduğumuz. Yillardır boru elinde tutan ETİBANK’ın bir şey yapmayışiyle geldiğimiz nokta. Ve bunlarla, stratejik öneme sahip, dünyanın %73’ü bizim, bu bir

43
bir planlama, stratejik bir plan modelinin Maden Mühendisleri Odasınıca ortaya çıkarması kanaatindeyim, arz ederim.

Tacidar SEYHAN: Teşekkür ediyorum. Katkılarınız için çok teşekkür ederim değerli arkadaşlarım. 1. oturumu sonlandırıyorum sonlandırırken Odalar konusundaki yasal değişiklikten duyduğum üzüntüyü de ifade etmek istiyorum. Böyle bir çaba var, mikro Odalar oluşturma çabaları var. İllerde parçalayarak hatta komşu ilde bir veya birden fazla Oda kurdurarak Türkiye’de ki etkinliğini azaltmak, Oda faaliyetlerini zayıflatma çabaları var. Bunun demokrasinin önunde en büyük engel olduğu kanaatindeyim özgür toplumlarda odalar sendikalar diğer demokratik kitle örgütleri ve hatta güçlü örgütler vazgeçilmez unsurlardır. Demokrasiye de onları koruyarak sahip çıkmak istiyorum. Hepimize saygı ve sevgilerimi sunuyorum.

Hicran YAMAN: 1. Oturuma katılan konuşmacılarımızına katılım belgelerini takdim etmek üzere Edirne CHP Milletvekili Sayın Kemal DEĞIRMENDERE-Lİ’yi davet ediyoruz. Ardından 15 dakikalık çay molası.
II. OTURUM
SANAYİNİN TUZU BOR

MODERATÖR
İlker ERTEM
Maden Mühendisleri Odası

Ümit Ragıp ÜNCÜ
ETİ Pazarlama Ve Dış Ticaret A.Ş. Eski Genel Müdürü
“Bor Ürünlerinin Kullanım Alanları ve Günümüz Teknolojilerinde Bor”

Dr. Serdar ERKAN
ERDES Teknoloji Kimya Endüstriyel Tasarım Kontrol ve Dış Tic. Ltd. Şti.
“22. Yüzyıl Enerji Sisteminde Bor”

Dr. Murat BİLEN
ETİ MADEN İşletmeleri Genel Müdürlüğü Teknoloji Geliştirme Daire Bşk.
“ETİ MADEN İşletmeleri AR-GE Çalışmaları”

Ayşen ERTEN
Maden Mühendisleri Odası
“Bor Ürünleri Potansiyel Gelişim Alanları”

Prof. Dr. Yalçın DUYDU
ANKARA ÜNİVERSİTESİ Eczacılık Fakültesi
“Bor Sağlık ve Çevre”

Demek ki ABD rezervlerinin bir problemi var, rezervlerinin sonuna geldiler. Rio Tinto üretimleri için 13 senede 16 milyon ton rezervinden harcamış, geriye kalan 12 milyon ton rezervini de kısıtlı kullanılarak 10 seneden biraz daha fazla idare eder ama normal kapasitede giderse 10 senelik bile bir ömür olmayan rezervlere sahip olduklarını ortaya çıkıyor. Rio Tinto rezervlerinin sonunu gördüğü ne

BOR Çalıştayı 2014

BORÇALIŞTAYI 2014

Bor kullanım alanlarına baktığımızda birçok alanda kullandığını görüyoruz. İnşaat, çimento, cam, cam elyafı bunları her tarafta bulabileceğimiz bilgiler. Bunları çok vakt harcamamak için hızlı geçiyorum gördüğümüz gibi bor hangi alanlarda kullanılır değil bor hangi alanlarda kullanılmıyor sorusunu sormamız gerek.” Kullanılmadığı yere ben şu ana kadar rastlamadım nereye bir el atsak atıdan mutlaka borun içinde olduğu bir ürün karşınıza geliyor. Bor birçok alan-da kullanılmaktadır. Bu alan sayısı bir zamanlar 250 ile ifade ediliyordu. Sonra 450-500 denildi ama şu anda bir başka örnekle o alanları vereceğim. Borun ETİ MADEN Yayınlarından baktığımızda baktığımızda son kullanım itibarı ile cam sektörü %51,

Bor kullanım alanlarına baktığımızda birçok alanda kullandığını görüyoruz. İnşaat, çimento, cam, cam elyafı bunları her tarafta bulabileceğimiz bilgiler. Bunları çok vakt harcamamak için hızlı geçiyorum gördüğümüz gibi bor hangi alanlarda kullanılır değil bor hangi alanlarda kullanılmıyor sorusunu sormamız gerek.” Kullanılmadığı yere ben şu ana kadar rastlamadım nereye bir el atsak atıdan mutlaka borun içinde olduğu bir ürün karşınıza geliyor. Bor birçok alan-da kullanılmaktadır. Bu alan sayısı bir zamanlar 250 ile ifade ediliyordu. Sonra 450-500 denildi ama şu anda bir başka örnekle o alanları vereceğim. Borun ETİ MADEN Yayınlarından baktığımızda baktığımızda son kullanım itibarı ile cam sektörü %51,

* http://www.erinventures.com/img/boron_blue.jpg

48
seramik sektöründe %13, tarımda %14, deterjan %3 ve diğerleri %19 olduğunu görüyoruz. Bu diğerlerinin 2002 yılında %2 iken, 2013 yılında %19’a gelmesinin temel sebebi bilhassa elektronik ve otomotiv sanayinde metalurji ve kimya sanayindeki gelişmeler borun bu alanlardaki tüketimini hızla yükseltmektedir. Evet, bor pazarına nedir diye bakıldığımda borun bizimde içinde bulunduğuuz ETİ MADEN’in ürettiği ürünler pazarı tonaj olarak bakıldığımızda %47’si elimizde olan 2-2,5 milyar dolarlık bir öngörü pazarı vardır, kaldı ki bunun da net rakamlar yoktur. Bor pazarı ile ilgili net rakamlara bilhassa bor konusunda ulaşmak çok zordur. Ama borun bundan sonraki aşama dediğimiz borun ürünsel hale döndüğü, içine dahil olduğu malzemelerin özelliklerini ve değerlerini arttırdığı, daha kimyasal, daha metalürjik ve daha üst sanayilerde kullanılan malzemelerin içine katıldığı pazarları 100 milyar dolarla ifade etmek yanlış olmaz. Hatta bu malzemelerin ticari kullanımını pazar hacmi televizyon, telefon bilgisayar, oyuncak, otomobil, tren vs. diye son kullanım ürünlerine baktığınızda bu rakamlar trilyon dolarlara kadar gider.

Yıllara göre bor tüketimine bakıldığımızda 1965’te 189 bin, 1970’tte 257 bin olan bor madeni tüketimi 2005’ten 5 milyon tonu brüt olarak bulunmuştur. 2013’ten Dünya’nın 2008 küresel krizinden bu yana yaşadığı finansal krizler nedeni ile 4 milyon 300 bin ton bor tüketimi vardır,’* Bu da Dünya’nın sanayi gelişimini ama sırft}

** http://www2.owenscorning.com/acquainted/does/

Bu hepimizin bildiği insansız uçak “predatör” dediğimiz uçak yerden “joy-stick” ile kumanda ediliyor. Bunun açık bir kesiti buldum NASA sayfasında, gördüğümüz üzere burada klasik jet yakıtlarını koyacağımız herhangi bir sistem görünmüyör. Bu uçanın güç sağlayıcısının bataryalı bir sistem olması gerekiyor, yani bunun üzerinde pilli bir bataryalı bir sistem olması gerekiyor. Sonra “Protenex” diye ABD’li bir firmanın (ki bu şirket Millennium Cell isimli Sodyum Bor Hidrürlü yakıt ve bataryalar üzerine araştırma yapan ABD’li teknoloji şirketinin 2010 yılında tüm patentlerini satın almış) Web sayfasında insansız uçaklarda sodyum bor hidrürlü yakıt sisteminin kullanıldığını ve bunun kendisinin ürettüğünü söyleyen bir açıklama-
Boru Çalıştayı 2014

52

Prof. Dr. İsmail DUMAN İstanbul Teknik Üniversitesinde metalurji bölümünde,**** o da, bir başka çılgın diyorum ben ona, o da bor fiberinden bahsediyor. Bor fiberi Prof. Dr. İsmail DUMAN tarafından laboratuvar ortamında gerçekleştirdi bu nun patentini de aldığını biliyorum ve bende merak ediyorum bor fiberi neerlerde kullanılmışınız gibi сразу Amerika Hava Kuvvetleri envanterinde bulunan uçaklar (F-15, F-14, B1 Bomber, Blackhawk, PredatorB UAV, Space Shuttle, B-52, C-130, F11, Boeing 727, 747, 757) ki bir kısmı bizim Hava Kuvvetlerinin enveranerde de var, uzay mekiğinin bütün gövdesi, gövde elemanları, bütün uçakların ana gövdeleri, jet uçaklarının “cutting edge” denilen havayı kestiği kısımları ve Airbus’ların ve büyük nakliye uçaklarının kuyruk, yanı yön dümeni ve yine kuyruğun içindeki irtifa dümenleri içine bor fiberi döşenmiş alüminyumdan yapıldı. Peki, bu bor fiberi teknolojisi çok mu özel, evet çok özel. Prof. Dr. İsmail DUMAN bu découzmuş, laboratuvarlarda bitirmiş bilimsel dokümanlarını yayınlanmış patentini almış. Demek ki bor fiberini Türkiye çözmüş, bundan sonra aşağı bir uçaq yapacağız diyoruz hatıralarımız bugün Türk Kuşu diye bir uçaq yaptığımızдан bahsediyoruz. Güney Kore’den parçalarını temin edip burada montajını gerçekleştirdiğimiz bir uçaq olduğu haberleri geçiyor başında yani başka bir şey değil gibi görünüyor Türk Kuşu uçağı keşke onu tamamen kendimiz yapabilsek. Bor fiberi işle böyle enteresan bir malzeme, bor fiberinin özelliği sıkıştırma Compression Strength dediğimiz sıkıştırma kuvveti ve Stif-
fness dediğimiz bir anlamda sertlik dayanıklılık özelliklerinin benzer karbon kökenli ürünlere göre çok daha iyi değerlere sahip olması onu özel kılmıyor. Bunun bir de fiyatı olması lazım bunun fiyatı da ton olarak satılmıyor, metre olarak satıyorlar Amerika’daki pazarlarda 4 mil ve 5,6 mil ölçülerinde bir satış fiyatı bazı var. 4 mil 1.200 dolardan, 5,6 mil 1.500 dolarlardan başlıyor fiyat olarak Ocak 2015 ayı için. Bunun tabi ton olarak hesabını yapamıyoruz çünkü çok mikro bir malzeme ve bunun ne kadarına ne kadara geldiğini bulamadım.

Yine Prof. Dr. İsmail DUMAN’dan bahsettiğini, ferro bor’dan bahsediyor ki bunun da laboratuvar çalışmalarını bitirip patenti almış Hoca. Ferro bor diyor içine neodyum kattığınızda inanılmaz bir mıknatıs ortaya çıkıyor. Doğrudur, bugün ülkemizde bor var demir var neodyum da var ETİ MADEN’e ait ruhsatlarla Sivrihisar’da, bütün bunları bir araya getirdiğimiz zaman ortaya çıkan manyetin özelliği ne, Ferrobor burada elektrik dönüşümünde elektromanyetik kayıpları, elektromanyetik geçirgenlik nedeniyle ortaya çıkan kayıpların yüzde 75-85’ini yok ediyor, yanı dönüştürme kayıplarını azaltıyor. Çünkü dönüştürme kayıplarının ortadan kalkması demek, enerjini zin yüzde 30 oranında artması demektir. Yani evlere ulaştan enerjinin yüzde 30 durduğu yerde artması demektir; yeni tesis açmadan, yeni santral veya HES yapımadan. Çok önemli ve bunun üzerinde de Dünya deliler gibi çalışılıyor, korkunç bir verimlilik ve korkunç bir ürün. Peki, bu ferroborlu mıknatıs nerede kullanı-

BOR ÇALIŞTAYI 2014

** http://www.metalprices.com/metal/boron/ferroboron-usa
II. OTURUM
SANAYİNİN TUZU BOR

yet sistemi içerisinde neodyum, demir, bor manyetleri en öne geçiyor.
Biliyorsunuz sodyum hidrür yakıt pilli bir bor mobil ilk örneği ül-
Kemizde. Bu borun bir başka kullanım alanı Türkiye bunu en azından Tübi-
tak MAM aracılığı ile BOREN ile birlikte bir şeyler becerdi ama devamı gelmesi
ümit ediliyor insanallah gelir. David SCHUBERT Alman asıllı Amerikan vatandaşı
Rio Tinto elemanı bir çalışma yapmışlar. Bu çalışmadı diyorlar ki 2050’li yıllar-
da dünyada Global olarak 2 milyar fuel cell vehicles (FCV) dediğimiz yakıtlı yani
hidrojen yakıtlı arabalar olacak bunuunda ağırlığı bor hidrür olacak diyor. Dün-
ya’da bunu karşılayacak bor rezervleri’nin Türkiye’de olduğunu Rio Tinto söy-
lüyor biz söylemiyoruz. Yine bir Alman firması nano bor teknolojili bildiğimiz
kapalı mekanda ortaya koyup elektriği taktığımız ısıtma sistemlerinde nano bor
teknolojili sistemler kullanılıyor, aynı benzer sistemi bir Türk şirketi de kendi
patenti yaratarak bunu yapmış. Bunlar hepimizin bildiği Dünyanın en pahalı
(2014 yılı için 128 milyar dolar) marka şirketi’nin satışa çıktığı sabah elektronik
markaların kapılarında milyonların sıraya girdiği ürünleri. Biliyorsunuz ismi
cık meşhur bir cep telefonu satışa çıktığında sabah Dünya’da kapıda 10 milyon

** http://www.roskill.com/news/4th-baotou-china-rare-earth-industry-forum/at_down-
load/attachment1
****** http://fakir.com.tr/i/265/ls-estove-2400
******* http://www.enover.com.tr/
******** http://sosyal.hurriyet.com.tr/yazar/vahap-munyar_44/nano-bor-ismetma-ve-sogutma-
da-en-tasarruflu-ol_28248942?__hrp__
müşterisi bekleyen bir telefondu. Bu akıllı telefonların en büyük derdileri bataryaların çabuk tükenmesi. Dünyanın en phahili marka değeri olan şirket 2011 yılı aralığı ayrı sonunda ABD patent enstitüsüne patent müracatı yapmış sodyum bor hidrürli piller ile ilgili. Demek ki önemdeki süreçte gibi elektronik cihazlarda ve akıllı telefonlarda daha uzun ömürlü daha dayanıklı sodyum bor hidrürlü pilleri göreceğiz. Oled’’ teknolojisi diye bir televizyon çıktı. Bu yeni oledleri biliyor muyuz kırılabilen ekranlar biz sadece burada televizyon pazarında görmüştük internete girince kırılabilen ekran, kırılabilen katı haline getirmişlər teknolojiyi.”**** Bunun içerisindeki teknolojide de Pyrolytic Bor Nitrür kullanılmış yani içinde borun bir kimyasal ürünü kullanılan ileri teknolojili bir ürün.*****

*** http://www.gizmag.com/lg-display-oled-transparent-flexible/32904/

Yine bir Rio Tinto çalışması, biz söyleyince insanlar yanlış algılıyor o yüzden Rio Tinto’nun verilerini kullanıyorum. Bu grafikte bor kullanımının 2050’li yıllara doğru dünyanın kişi başına düşen gelir düzeyi arttığından dünya bor talebinin görüldüğü gibi inşa edileceğini gösteriyor. Yani günümüzdeki süreç borunda içinde olduğu ileri teknolojili bir çağ. İleri teknoloji malzemelerin çoğu bor esaslı ya da bor katkılıdır. İçine bor katことができürdür. İçine bor katıldığında ürün fiyonunu 10’a, 100’e hatta 1000’e katlamaktadır. Tabi bunlar için ne yapmak lazım AR-GE yapmak lazım, AR-GE yapmak için para lazım. ETİ MADEN yaklaşık 850 milyon dolar ciro yapıyor bunun %42’si net kar yani tüm kanuni yükümlülüklerini yerine getirdikten sonra net kar %42’si yanı yaklaşık 350 milyon dolar civardı. Bu 350 milyon doların her sene 100-200 milyon dolarını borlu AR-GE’lere harcansız, 10 sene sonra Dünya’nın şifrelerini çözmiş olacaksnız ve birçok üründe öne geçme şansı bulacaksnız. Türkiye’de pek çok bor ürününün üretim şifrelerinin çözülebilmesi için kamu mülkiyetindeki bor madenlerinin kamu eliyle çıkarılıp satılmasıyla sağlanan kamu gelirlerinin önemli bir kısmının ileri teknolojik bor ürünlerine

* http://focusfusion.org/index.php/site/article/deuterium_tritium_vs_hydrogen_boron/
** http://www.metalurji.org.tr/dergi/dergi130/d130_2534.pdf
yönelik araştırma-geliştirme projelerine aktarılması, katma değeri yüksek ürünler ihraç edebilmenin en rasyonel ön adımı olacaktır. Evet, bor madenleri altın yumurtlayan bir tavuktur. Bu tavuğu kesmek üzere elinde biçaklarla satırlarla bekleyenler çok, buna karşın bor madenlerine sahip çıkanlara teşekkür ederim.

İlker ERTEM: Ümit Beye verdiği bilgilerden dolayı teşekkür ederiz. % 50’nin üzerinde üründe yer alan borun seçili ürünlerine dair bir aktarında buldular. Sanırım bu sanayi ile uğraşan kişilerin dikkatini çekecektir ve sanayicilerin de AR-GE çalışmalarına, bor ile ilgili AR-GE çalışmalarına, ağırlık verdiklerinde farklı bir noktaya ulaşma şansımız doğacak, diye düşünüyorum. İkinci konuşmacımız Sayın Dr. Serdar ERKAN size 22. yüzyıl enerji sisteminde bor ile ilgili bilgi aktaracak. Buyurun.

Ben 2003’te lisans derecemi ODTÜ Kimya Mühendisliği’nden aldığım sonrada yakıt pillerine ilgi duyarak sayın hocam Profesör Doktor İnci EROĞLU ile çalışmaya başladıım. Yakıt pilleri ile ilgili deneyim kazandıktan sonra da bu alanın aslında çok önemli olduğunu keşfettik ve çıkarılacak ürünlerin çok büyük bir pazarda yer alabileceğini ama zor olduğunu gördüm ve sodyum bor hidrürler bulan bir firmanın bu alanına dair bir araştırmayı yaptığını gördüm. Eş zamanlı olarak da bazı firmalarda çalıştıkta sonra doktora sonrasienda
II. OTURUM
SANAYİNİN TUZU BOR

da kendi firmamı kurarak bu konuda araştırma yapmaya başladım.

Enerji, çeşitli amaçlar için insanların taşıdığı boyutlardan, insanların, yükleri taşıyan boyutlara kadar çok geniş bir alanda ihtiyaçlarını karşılıyor. Günümüzde sürekli olarak yanımızda tasarım gereken bir enerjiye ihtiyaç bulunmaktadır.

Şu anki durumda bu ihtiyaç lityum piller ile sağlanmaktadır. Lityum piller ne kadar eski teknoloji pillerle kıyaslandığında yüksek enerji yoğunluğuna sahip olsa da günümüzün elektronik gereçlerinin enerji ihtiyaçlarını sağlamaktada yetersiz kalmaktadır. Apple, Samsung gibi mobil teknolojiler geliştirirken firmalar yeni enerji depoları geliştirmek üzere çalışmalar yapmaktadır. Apple Inc. firmasının geleceğin enerji sisteminin bir parçası olacağı düşünülen yakıt pilleri üzerine patent başvuruları olduğu bilinmektedir.

Bir başka mobil enerji ihtiyac ise savunma sanayi alanında oluşmaktadır. Şekil 1’de bazı örnekleri gösterilen, savunma sistemlerinde kullanılan bilgisayarlar, telsiz sistemleri, çeşitli yön bulma sistemleri ve Jammerlar, genellikle insanlar tarafından taşınması gereken ve oldukça enerji tüketen cihazlardır. Hafif enerjiye ihtiyaç duyulmaktadır. Hafiften kastedilen şudur; lityum pillerdeki enerji yoğunluğu eski pillere göre kıyaslandığı zaman çok yüksektir ve lityum pil teknolojisi ilk geliştirildiğinde o zamanın şartlarındaki cihazlar için oldukça yeterli gelmiştir. Ancak zaman içerisinde bazı alanlarda, bazı uygulamalarda yetersiz kalmaya başlamıştır. Örneğin Şekil 2’de bazı örnekleri sunulan, çok güncel ve popüler cihazlar olan quad kopterler (dronlar) ciddi bir şekilde kullanılmaya başlanmıştır. İstihbarat amaçlı ve hatta bazı kargo şirketleri çok hızlı taşınması önem arz eden bazı ilaçları çok acil yetiştirilmesi için quad kopterlerle taşımaya başlamıştır. Tabi ki bu araçlar yüksek miktarda enerji gerektiren ve

Günümüzde taşıtlar da enerji kullanımı olarak elektriğe doğru kaymaya başlamıştır. Bisikletler ve scooterler elektrikli olarak çalışmaktadır (Şekil 3).

Kullanımı ilk etapta lityum piller girmektedir. Günümüzde bütün otomobil şirketlerinin elektrikli araçları mevcuttur. Tesla en başarılı olmakla birlikte çoğunlukta 150 km’yi geçmeyen menzilleri olan elektrikli otomobiller mevcuttur (Şekil 4).

Bu sorunu aşabilmek için mecburi olarak bir ara geçiş olarak hibrite doğru bir yönelme bulunmaktadır. Öncelikle mevcut petrol sisteminden uzaklaşmadan

Şekil 5. Honda FCX Clarity hidrojen yakıt pilli otomobil

Otomobillerde yakıt pilinin önemi şu şekilde özetlenebilir. Otomobinin batarya ile çalıştırılması halinde ağırlık sorunu çözüle bile birde şarj hızı problemi mevcuttur. Şu anki teknolojide aldığımız benzin, motorin, LPG gibi 5-10 dakika içerisinde tüm enerjimizi depolama imkânı bulunmamaktadır. Yakıt pilleri hem elektrik avantajlarından faydalanırken hem de çok hızlı enerji doldurma imkâ

Bu kadar cazip görünen bir alanda en büyük problem nedir? Elektrik depolama teknolojisindeki en büyük problem ağırlık ve hacimdir. Şekil 6’da lityum piller ile çeşitli hidrojen depolama teknolojileri karşılaştırılmaktadır. Piyasada bulunan oldukça üst segment 1.2 kw saat elektrik depolama kapasitesine sahip bir lityum polimer pil 13 kg ve 13.5 litre iken aynı miktar enerji benzin olarak depolandığında 93 gram ve 100 ml gibi bir karşılığı bulunmaktadır. Bu değeri
verimsel olarak düşündüğümüzde %15-20 olarak dönüştüğünde, yaklaşık olarak 500 gram mertebesinde bir ağırlığı bulunmaktadır. Şimdi alternatif dedik hidrojen dedik 350 barlık bir hidrojen deposu 706 gram ve 270 ml diye geçiyor ama tabi oransal hesaplama yaptığımızdan aslında sistem çok büyük. Yani bu kadar ağırlıktada depolamanız mümkün değil yani daha büyük bir tankınızın olması gerekiyor. Oransal olarak büyültüğe bu seviyeye doğru inersiniz. 1 kilo wattlık enerjiyi sodyum bor hidrür olarak kullanmak istediğimizde yaklaşık 170 gram-lik bir ağırlığa karşılık geliyor. Bunu çözelti olarak kullandığımızda yaklaşık 300 grama karşılık geliyor. Yani sulu çözelti olarak dolayısıyla yani benzine çok yakını bir alternatif var burada ve elektrik avantajını hidrojene dönüştürerek kullanma imkânı var çok yanı dikkate alınması gerekiyor.

Şekil 6. 1 kWh enerji içeren yakıtların, benzin ve LiPo bataryalar ile karşılaştırılması

62

Çok kısaca kritik noktaları tekrar belirtmek istiyorum. 22. Yüzyıl artık petrolden yavaş yavaş çıkmıştır ve elektriğe doğru geçilecek bir yüzyl olacaktır ve lityum polimer ve lityum ioni pillerinde artık sınırlarına gelmiştir. Bu enerji yoğunluğu sevi-

Dr. Murat BİLEN: Değerli Katılımcılar sunumumun başlamadan önce hepini sizleri selamlıyorum bugün sizlere ETİ MADEN işletmeleri Teknoloji Geliştirme Daire Başkanlığı’nın borlarla ilgili yaptığı AR-GE çalışmaları hakkında kısa bilgiler vereceğim. Bugün ki durumumuzda misyonumuzun üretim tesislerimizde karşılaşılan problemleri çözmekte, yeni bor ürünleri ile ilgili ve teknolojiler hakkında araştırma yapma ve teşviklüğümüzün yeni stratejisini araçtırma yapma ve stratejik alanlara yeni stratejileri olarak endüstriye ham madde sağlamak yerine bor içeriğine nihai ürünleri üreten ve kendisi pazarlarını kendisi oluşturan bir kuruluş olmak yani borunun eşiğine geçmek için hedeflerimiz tabi ki daha ekonomik ürünler üretmek, yeni kullanılan alanları bulmak, yeni ürün oluşturmaktadır. Burada stratejimiz bor ürünlerinin pazarlarını büyümesini beklemek yerine yeni bor ürünleri ve yeni kullanım alanlarını bulmaktır.

Cürufun yoğunluğu 2 katına çıkarılmıştır. (1,36 dan 2,64 gr/cm³). Proje devrede girdiği 2013 sonundan bugüne kadar 3,500 ton bor ürünü kullanılmıştır. Bu sayede insan sağlığı, çevre, taşıma ve stoklama problemi olan bu cüruflar işlah edilmiştir.

Bir diğer çalışmamız ise yüksek fırınlarda kullanılan kök kömürün iyileştirilmesidir. Bu kök kömürün kalitesinde 2 tane unsur var biri CSR diğerı CRI unsuru bunun biri fiziksel de diğer de kimyasal reaksiyon ile ilgilidir. Kok kömüründe CSR ve CSI uluslararası bir standardı bulunmaktadır. Biz oluşturduğumuz 300 ton deneme amaçlı İtalya’da bir firma için numune hazırladık. Ümit Beyin sunumunda da borun bugün kullanım alanı %51 cam sanayinde idi. Bu cam sanayinin %18’e gelen kısmına biz bor ürünü satıyoruz eğer biz bu projeyi gerçekleştirelimse geri kalan %82 düzey cam ve konteyner camda bor kullanılmış ve büyük bir pazar oluşturmuş oluyoruz.

larmızı %16’lardan %3-4’lere indirecek cihazlarımızı tesislerimize kazandırılmış olduk. Dinlediğiniz için teşekkür ederim.

İlker ERTEM: Teşekkür ederim. Dördüncü olarak, Sayın Ayşen ERTEN bize bor ürünleri potansiyel gelişim alanları konusunda bilgi aktaracaklar.

Ayşen ERTEN: Sevgili Konuklar, Sevgili Dostlar, hepinizi saygı ile selamlıyorum. Bu görevi aldıktan sonra borların gelişim alanlarının neler olabileceğini düşünürken; bor ürünleriyle ilgili araştırmaların dünya çapında arttığını, hem Türkiye’deki hocalarımızın çalışmalarını, hem teknolojiye olan ilgisini; yenilikçi küçük orta ölçekli şirketlerinde sektöre ilgi duyup başladığını ve farkındalığın arttığını gördüm bu durum tabii ki beni sevindirdi.

Söz konusu ülkelerde 2011 yılı itibariyle…” (kilit sektör) sektörlerde ilgili Leontif matris yöntemiyle yaptığım bir çalışmada; tüm ülkelerde ana metal sa-

* Sektörel bazda kişi başına katma değer ($/kişi) (OECD,2014)

Kimyasal madde ve ürünlerin imalatında: Türkiye: 131, Japonya: 782, Almanya: 906, Kanada: 1.454

Ana metal san.&fabrikasyon metal ürünlerin imal.: Türkiye: 156, Japonya: 1.379, Kanada: 1.279

Elektronik ve optik ürünlerin imalatında Türkiye: 78; Almanya: 1.388; Japonya: 1.434, Kanada: 1.143

** Kaynak:www.wiod.org,2014
II. OTURUM
SANAYİNİN TUZU BOR

II. OTURUM SANAYİNİN TUZU BOR

69

II. OTURUM SANAYİNİN TUZU BOR

nayi ve fabrikasyon metal ürünleri imalatı, kimyasal madde ürünleri imalatı kilit sektör konumunda. Yine elektronik optik ürünler sektörü de ön plana çıkmaya başlamış gözüküyor. Tabii bunların hepsinde bor tüketilmekte. Hangi sektörde bor yok dersek tüm sektörler / alt sektörlerinde sayısız alanda bor kullanılmaktakt.

Bor ürünü ve teknolojileri açısından kilit sektör/alt sektörleri incelediğimizde (Tablo 1) ileri teknoloji alanları başta olmak üzere; cam, seramik, kimya, nano malzemeler, kimya, elektrik-elektronik, bilgi iletişim teknolojileri, enerji, manyetik soğutma teknolojisi ile soğutma sistemleri, motorlar, savunma sanayi, hücre yakıtları, nükleer, roketler, uzay ve havacılık sektörü, yapı malzemeleri, kompozit veya yapışsal güçlendiriciler, demir çelik, hızlı trenler, otomobiller, deniz taşıtları gibi ulaşım araçları, gıda, tarım

Arkadaşlarım da anlattı, en yüksek bor tüketim payı cam sektörüne aittir (Cam elyafı + cam yünü % 46, Borosilikat Camlar % 10). Bunları hızlı geçeceğim çünkü yine bu sektör benzer şekilde gelişmeye devam edecek. 2014 ve 2020 yılında da en yüksek bor tüketen sektörler;" fibreglass, borosilikat cam, seramik, tarım

* http://www.tubitak.gov.tr/tubitak_content_files/vizyon2023/mm/Ek2h.pdf
ve deterjan sektörlerindeki bor tüketimlerinin artarak devam edeceği öngörül-
muştu.

Yine AB’ raporlarına bor ürünlerinin ikame edilebilmeye durumuna baktığımızda; borosilikat camlarda, tarafından fiberglass da ve ferro bor da bir alternatif olmadığını belirttiğiziz. Ancak, raporda seramik, deterjanlar gibi diğer tüketim alanlarında kısmen de olsa alternatif ürünler geliştirilebilir (kullanılabilir) görülmüştür. Yine ABD’nin kritik ürünler’ stok durumlarına göre hangi ürünü hangisinin yerine kullanılabileceğini baktığımızda: Aşındırıcılarda Alüminyum oksit yerine bor karbür, plastik ve yapıştırıcılarda (yıkan geciktircilerde) antimuan yeri-
ne bor ve diğer bor bileşikleri alternatif olarak tercih ediliyor. Uzay ve havacılık sektöründe berilyum yerine bizim çok da içine giremediğimiz fiberler, metal matriks kompozitlerin kullanılabilir olduğu bilgisi yer almaktadır. Elektro miknatsılarda terbiyüm yerine NdFeBor miknatıslar, Tungsten yerine bor nitrür kullanılabilmektedir. Bor ürünlerinin birbirlerini ikame etme özellikleri de farklı alternatifler sunmaktadır. Bu çalışmada ETİ MADEN tarafından üretilip pazarlanan kolemanit, üleksit, borik asit, pentahidrat, dekahidrat dışındaki hem önemli bor kimyasalları bazında hem bor ürünleri girdi alan sektörler bazında gelişmeleri bakmaya çalıştım, bu kapsamda biraz geniş bir bakış açısı oldu diye-
lim (Tablo 1, Tablo 2).

Elementel Bor: Önemli bor kimyasallarına bakınca, elementel bor olmazsa ol-
mazlardan, birçok alana girdi veriyor. Dünya üzerinde 51. en çok bulunan ele-

files/docs/crm-critical-material-profiles_en.pdf

* http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/crm-critical-materi-
al-profiles_en.pdf

** Evidence/Data Regarding the Utility of Substitutes for Mitigating Shortfalls (US Strategic and Critical Materials 2013 Report on Stockpile Requirements Office
II. OTURUM
SANAYİNİN TUZU BOR

İleri seramik ve nano seramikler: Bor karbürleri, bor nitrürleri, diğer borürleri içeren ileri seramik ile nano seramikler sektörünün gelişimine baktığımızda; 2013 yılındaki 9 milyar dolarlık hacmin yıllık %6,2 oranında büyüyor 2018’te 12 milyar dolarla çıkacağı bekleniyor***. Nano teknoloji tabanlı ürünlerin 2015 yılında 1 trilyon dolar pazar payına sahip olacağı tahmin edilmektedir****.

BOR KARBÜR (B₄C) : Yine bu bor bileşiklerinde en önemlilerinden birisi bor karbür, elmas ve kübik bor nitrürden sonra gelen üçüncü sert malzemedir. Bor cam, sır, emaye ve frit yapımında ergitici katı olmak üzere 2014 yılı ithalat fiyatı : 505 $ / kg (TÜİK)

Acar S., Pavezyum A.Ş.

** Nano bor : 8.000 $ / Kg (http://www.specmaterials.com/pdfs/BoronnanopowderSamplePricing2013.pdf)

Elementel bor ?2014 yılı ithalat fiyatı : 505 $ / kg (TÜİK)

*** Kaynak: PR Newswire US. 08/26/2014

**** Bilkent UNAM (Bilkent Üniversitesi Malzeme Bilimi ve Nanoteknoloji Enstitüsü) Sunumu
ile ilgili çalışmalar yapmakta örnek olarak Altay tankı gibi. Yine maden, metalurji ve otomotiv sektöründe aşınmaya karşı ve nükleer uygulamalarda kullanılmakta. Örnek madencilik sektöründe maden makinalarında kesici-delici uçlarda aşınmaya karşı kaplamalar şeklinde kullanılmaya başlandı. Gördüğümüz üzere birçok alanda bor karbürü kullanabiliyoruz, hem askeri alanlar ve sivil alanlar her yerde var ve birçok alanda da kullanılmaya gelişmeye devam ecektir. Yukarıdaki ve aşağıdaki şekillerde de görüldüğü üzere; Türkiye’de (örnek Nurol A.Ş.)’ Bor Karbür esaslı askeri ve sivil kullanım amaçlı zırh plakalarını üretmektedir.”

* http://www.nurolteknoloji.com/tr/sectorkler/sanayi-sanay.html
** http://tr.wikipedia.org/wiki/Altay_%28tank%29
*** http://www.ssm.gov.tr/anasayfa/курumsal/SSM%20Dergisi/SSM_17.pdf; Sektörle Sözlü Görüşmeler, TÜİK
en fazla kullanım alanı pota ve termokupl astarı yapımındadır. **Hafniyum di-borür (HfB2)** sahip olduğu mukavemet ve termal özelliklerinden ötürü yüksek hızlı araçlarında ICBM ısı kalkanı veya aerodinamik ana kenarlık olarak kullanılmaktadır. Ayrıca günümüzde bu borür nükleer reaktör kontrol çubuklarında yeni bir malzeme olarak kullanılmaktadır.

BOR NİTRÜR: Bor nitrüre gelince bor nitrürde gerçekten gelişime açık bir bor bileşiklerinden birisi. 3 formu var: Kübik(cBN),** hekzagonal(hBN),*** amorf bor nitür. Bor nitürünün nano yapıları da çok üretilmeye başlandı. Bor nitürünün uygulama alanları çok fazla. Özellikle geleceğin ileri teknoloji ürünü sayılabilir. 1999 yılında dünya bor nitür**'ün üretimi 300-350 ton; önemli üreticiler ise ABD, Japonya, Çin ve Almanya'dadır. 2000 yılında standart endüstriyel kalite h-BN'nin fiyatı 75 – 120 $/kg iken yüksek saflıktaki bor nitürün fiyatı ise 200- 400 $/kg arasında değişmiştir.

Kübik Bor Nitrür: Kübik bor nitrür elmastan sonra bilinen ikinci sert malzemedir. Çok yüksek termal iletkenliği, aşınmaya karşı yüksek mukavemeti, sertliği, kimyasal olarak inertliği, yüksek ergime (2.973°C) sıcaklığı sahibi olmasından dolayı yüksek enerji potansiyeli elde edilmesi için kullanılır. Kübik Bor Nitür, yüksek performanslı iç ve dış yanıcı olmayan, yüksek sıcaklıkta çalışan odalar için kullanılır.

* http://en.wikipedia.org/wiki/Boron_nitride
*** Hekzagonal Bor Nitrür : hBN, 99% saf , APS: 70 nm 1 lb in plastic bag 108 $; 10 lb 990 $; hBN, 98% saf , APS: 0.5 micron 1 lb 90 $; 10 lb 810 $ (*Nuran AY, SSM sunum); http://www.ssm.gov.tr/anasayfa/hizli/duyurular/etkinlikler/konferanslar/Documents/BorCalistayi/II.Oturum/Bor%20Esas%2C4%20Seramikler%20%28Bor%20Nitr%2C3%20Cr%29,%20Prof.Dr.%20Nuran%20AY.pdf

73
Bor ÇALIŞTAYI 2014

Aşağıdaki grafik ve şekilde de görüldüğü üzere, oda sıcaklığında BNNT’ler

* http://www.biyomedikalcaliler.com/Konu-Ultra-Sert-Bor-%C4%B0%C3%A7eren-Koru-yucu-Kaplamar.html

*** Science at the Theater: Science Remix in Richmond, CA http://www.youtube.com/watch?v=Gn5jyPtbXKl&feature=youtu.be&t=34m30s
araç yapıları için en yüksek mukavemete sahiptir.*

Bor nitrür nano tubes beyin kanserlerinin tedavisinde (BNCT), toprağın tuzdan arındırılma süresini 4 katı kadar hızlandırmakta, Bilkent Üniversitesi’ ve BORTEK’in çalışmalarına göre kemik kırıklarının iyileşmesi %50 daha erken iyileşmektedir. Organik Fotovoltaik güneş hücrelerinde bor nitrür ultraviyole ışığın geliş frekansına karşı termal şoklara koruyarak cihazların ömrünü uzatmakta ve mükemmel şeffaflık sağlama artırmaktadır.

Berkeley Laboratuvarından bilim adamlarının çalışmaları göre, karbondaki aşama bor nitüre geçmiş durumda bu alanda (sekildeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçilmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre Pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre Pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre Pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.*** Bor nitüre geçen durumda bor nitüre geçmiş durumda bu alanda (sekiindeki bor nitrür nano tubes). Berkeley Laboratuvarından R.Whitney’e göre Pamuk topuna benzeyen bor nitrür nano tüpleri çelikten 100 kat daha güçlü ve 900 dereceye kadar daha dayanıklı. Binden fazla kullanım alanı olan karbon nano tüplerin pazardaki yerini bor nitrür nano tüplerinin alması beklenmektedir.

* https://www.jlab.org/FEL/BNNT-CEBAF.pdf

** Bilkent UNAM çalışmalarına göre, kemik kırıkları içine enjekte edilerek çatıltak ve kırıklar daha hızlı iyileşme sağlanan kök hücreye alternatif olabilecek nano yeni bir jel malzeme geliştirilmiş, 2014 (http://www.diyadinnet.com/HABER-76594-kemik-k%C4%B1r%C4%B1klar%C4%B1n%C4%B1n-jet-iyile%C5%9Fme-geliyor)

**** BN nanotubes silindirik l <15nm $950 / g 0.5g, Ortalama tane boyutu %99 nano toz. <150 nm 162.50 $ http://www.sigmaaldrich.com/catalog/product/aldrich/790532?language=en®ion=TR
Nanosheetler: Berkeley laboratuvarında araştırmacılar tarafından yapılan bir çalışmaya 2 boyutlu transistör modeli üretilmiş. Ama eğer bu sistem endüstriyel boyutta devreye girerse yaklaşık 100 milyar dolarlık bir elektronik yarı iletken pazarı söz konusu. İletişim sektöründe yüksek performanslı elektronik sistemlerin gelişimine katkı sunacak olan çalışma da nano bor nitrür önemli katkı sağlayacaktır (Nano sheetlerin üzerinde.)

Bu 2 boyutlu transistorde kullanılan malzemeler molibden, grafin ve hekzagonal bor nitrür nano sheets. 2 boyutlu (katmanlı) özelliklerinden ötürü 1 nm kalınlıkta çalışan transistörler üretip, birim alandaki transistor yoğunluğu artırmak mümkün olabilir. Bor nitrür yeni nesil transistorlerde yalıtan malzeme olarak (gate dielectric) kullanılrsa, transistorlerdeki elektron mobilitesi yüksek voltajlar da düşüş gösterebilir. Bunun sebebi bor nitrürün atomik olarak düz bir yüzeye sahip olması ve yüzeyinde bağ yapmamış atom bulundurmasını sayesinde yeni fiziksel mekanizmalarla çalışan transistörler üretilebilmesidir. Dolayısıyla, bu transistör sayesinde düşük enerjiyle yüksek performans elde edebileceğimiz elektronik sistemler tasarlanabilmektedir. (Günümüzde bilgisayar/telefon gibi elektronik aletlerde kullanılan transistörlerde elektron mobilitesi yüksek voltajlarda düşer. Bu da daha yavaş çalışan ve daha çok enerji harcayan sistemlere sebep olur.)

Hekzagonal Bor Nitrür: Seramik malzemeler içinde en düşük yoğunluklu olanıdır (2,27 g/cm³); Çok yüksek sıcaklıklara dayanıklıdır (inert atmosferde 3.000°C’ye kadar, hava ortamında 1.000°C’ye kadar) ; termal çok dirençli yüksektir (0-2.000°C arasında isıl şoklarına karşı dayanıklıdır; yüksek sıcaklıklarda refrakter, birçok ergim metal veya camlar tarafından islatılma özelliği düşüktür. Mükemmel elektrik yalıtımı ve ısı iletimi özelliğine sahiptir, Mükemmel yağlayıcılık özelliğine sahiptir, UV çok iyi yansıtır, Kübik Bor Nitrür Üretiminde kullanılmaktadır. Hekzagonal bor nitrür elektronikten

* Berkeley Lab,2014 (http://pubs.acs.org/doi/abs/10.1021/nn501723y)
kozmetiği yağlayıcılardan yine kaplamaları kadar her yerde hayatımızda. hBN kaplamalar, cBN üretimi, elektronik, yağlayıcılar, kozmetik, sıcak preslenmiş kütleler, hekzagonal bor nitür var çok iyi yağlayıcı, çok iyi ısı iletimine karşı çok iyi elektriksel yalıtım özelliklerine sahip. Savunan sanayinde hBN; nam-lu,mühimmat, mekanizma ve benzeri yerlerde rüzgar türbinlerinde sürünmeyi, aşınmayı azaltmak için yağlama amaçlı kullanılmaktak. Çok farklı alanlarda teorik ve praktik uygulama çalışmalarını devam ediyor.

hBN Kaplamalar: Tüm hareketli parçalara uygulanabilmektedir. BORTEK tarafından geliştirilen örnekler şöyledir; Buzdolabı kompresör parçaları, içten yanmalı motorlarda krank, eksantrik mili, sekman vb. parçalar, senkromeç, ayna mahruti, şanzıman gibi aktarma organları kalıpları ve hareketli aksamalar, yataklar, pimler ve civatalar, rüzgar türbin dişleri ve yatakları gibi. Gemilerin su ile temas eden yüzeylerinde biriken kirleticiler geminin yakıt tüketimini %40’a kadar artırılmaktadır. Bortek antifouling suyla temas eden yüzey temiz olan bir deniz taşıtı daha az yakıt tüketerek daha hızlı yol almaktadır. Çevre dostu**. Bor tek Cam Filmi 200-300 Nano metre boyutundaki en zararlı dalga boyutundaki UV ışınlarına karşı geliştirilen cam filmidir.

Kompozit hBN kaplama, hareketli çelik parçalarda sürünme ve özellikle aşınmayı minimize etmek için geliştirilen bir teknolojidir. Kaplama bünyesinde taşıdığı hekzagonal bor nitür sayesinde sürünme ve aşınmayı azaltmaktadır. Kompozit hBN kaplama, krom oranı %2’den yüksek olmayan çeliklere uygulanabilmektedir. Kompozit hBN kaplama ile hareketli parçalardaki asınma neticesinde oluşan mikro pittingler azaltılıp dişlerde ve vidalarda vb. parçalardaki kırılma ve hasarlanma önlenmiş. Kompozit hBN kaplama endüstride aşınmaya karşı yaygın kullanılan standart Mangan kaplamayla kıyaslandığında aşınmayı %55,4 daha az altlığı laboratuvar testleri ile tespit edilmişdir. Kriko dişlerinde dayanım ömrünü 18 kat artmış, , metal enjeksiyon kalıp pimlerinde aşınma problemine çözümüştür. Çelik sicak dövmede kalıp ömrümü %30; alüminyum metal enjeksiyon döküm tezgah pistonlarının ömrünü %50 artırdığı ve, senkromeç ve ayna mahrutu dişleri kaplanmış ve normal şartlara göre ömrünün 5 kat artmasına karşı hasarlanmadiği belirtilmiştir.

TRİBOLOJİ: Sürünmeyi ve aşınmayı azalma amaçlı yağlama çalışmalarını. TRİBOLOJİ ALANINDA çığrılan önemli çalışmaları gerçekleştiren ABD Argonne Labortauvarından PROF.DR. Ali ERDEMİR ABD’de 4 kez R&D ödülünü kazandı. R&D ödülleri, her yıl dünyada 100 önemli buluşun sahibi bilim adamları ve enstitüle veriliyor. Uygulamalı bilimin Nobel'i sayılan bu ödülü, teknoloji araştırmalarının temel kaynağı olan R&D dergisi, dünyanın en önemli bilim adamlarından oluşan bir jürinin kararına göre veriyor. Motorsilk’’’ bu kapsama geliştirilmiş

* http://www.borteknolojileri.com/, 2014
** http://www.borteknolojileri.com/urun_koruyucu_malzeme.php
*** http://motorsilk turkey.com/, 2014 ; e-posta

Hekzagonal Bor Nitrür : Boronmax ürünleri, içten yanmalı motorlar, redüktörler, rüzgar türbinleri aktarma organlarında verimlilik amaçlı kullanılmaktadır. (ör: Nano boyutlu Hekzagonal Bor Nitrürli motor yağı katkısı) Boronmax M1002: Rüzgar türbinlerinde nano boyutlu hekzagonal bor nitrürle sürünmeyi azaltmak ve yağ isısı düşürmek amacıyla çalışmalar yapılmış ve çok iyi performans elde edilmişdir. Öyle ki, 20 sene çalışması planılan bir rüzgar türbin ömrünün 6-7 yılda aşınmasına rağmen nano bor nitrürü (boronmax) yağlama amacıyla kullanıldığında çok daha iyi performans alınacağı ve türbin ömrülerinin uzayaçağı düşünülmüştür. Çünkü mevcut durumda rüzgar türbinlerinde yağ ısırdığı zaman üretim sorunları ve dolayısıyla enerji verimliliğinde düşüşler yaşanıyor.

3 saat sonra ısıma neden olan türbinin çalışması durdular ve soğutulmuş şekilde operasyon yapılıyor. Nano boyutlu hekzagonal bor nitrürü kullanıldığında 3 saat sonra yağın ısısını sabitleyip, yağın ısısını düşürme ve soğutma amacıyla çalışmaktadır. Yağın sıcaklığında %52 azalma ve 3 saat sonra yağın sıcaklığının sabit kalması ile türbinin çalışması devam edildiğinden asırı ısıma ve yağın ısısını düşürme ve soğutma nedeniyle türbinin çalışması durduruldu. Dolayısıyla, hekzagonal nano bor nitrür ile yağlama yapılması sürünmelerin azalması ve başka tür türbinaların ömrünü uzatarak tekrar montaj ve bakım maliyetlerini de azaltılıyor. Çanakkale Seramikteki redüktörde Boronmax 1002 ile yapılan testte %10,27 oranda elektrik tasarrufu sağlandığı ve bir hafta içinde fiyatını amorti ettiğini tespit etmiştir. Boronmax, motor yağı katkısının araçlarda sürünme katısını %14 azalarak %5’e varan yakıt tasarrufu sağlamaktadır.

Sürtünme ve aşınma kaybının ülkemizde 2004 yılında 11 milyar dolar olduğu tahmin edilmiştir (GNP’nin %4’ü)”. Bor nitrür nano yapılarla veya diğer borlu ürünlerle ile bunların ekonomiye kazandırıldıkları düşünün yarısı bile olsa çok büyük bir katkıdır ki makine ekipmanları gibi verimlilikte yeni emek ve serbest bırakıldı.

Çinko Borat (Alev Gectikirici/ Duman Bastırıcı): xZnO.yB2O3.zH2O) : Bor, kendisinin oksit olması ve ergime sıcaklığının yüksek olması nedeniyle yanmaya karşı oldukça dayanıklı olup alev geciktirici sektöründe yaygın olarak kullanılmaktadır. Çinko borat, çinko borat-antimon trioksit kombinasyonu ile veya tek başına da kullanılabilmektedir. Çinko boratın tüketiminde; yanmaya karşı dayanıklı selülozik ve plastik malzemeler ile yanın söndürücülerin imalatı en önemli alanlardandır. Yüksek dehidratasyon sıcaklığı (290 – 300 °C gibi) sahip olduğu için yüksek sıcaklıklarda dayanıklı plastik malzemelerin üretiminde)**

** Kaynak: http://www.fen.bilkent.edu.tr/~mb/dokumanlar/Nanoteknoloji_UNAM.pdf
II. OTURUM
SANAYİNİN TUZU BOR

önemlidir. Çinko boratlar, kablolarda, yanmaya dayanıklı boyalarda, kumaşlar- da, elektrik / elektronik parçalarında, yanmaya dayanıklı halı kaplamalarda, otomobil / uçak iç aksamlarında, tekstil ve kâğıt endüstrisinde, ahşap, kâğıt gibi doğal fiberlerde, polimerlerde ve kaplamalarda, özellikle PVC, halogenli polyester ve naylonlarda, alev geciktirici, duman bastırıcı ve/veya korozyon geciktirici olarak kullanılmaktadır. Diğer alev geciktiricilerle karşılaştırıldığında daha etkili bir duman bastırıcı ve diğer alev geciktiricilere göre daha ucu zdur. Son yıllarda çinko boratın Al(OH)₃ ve Mg(OH)₂ ile birlikte alev geciktirici olarak kombine kullanımı gittikçe artmaktadır. Çinko borat alev geciktiricilik kullanımının dışında, mantar, böcek öldürücü olarak ahşap aksamlın korunmasında, bor si - likat ham maddesi ve seramik sanayinde ergime noktası düşürücü (flux) olarak kullanımları bulunmaktadır.

Çinko borat alev geciktirici hayatımızın her tarafına girmek zorunda. Evlerimizde, iş yerlerimizde, arabalarımızda da çünkü yangın geciktirici yani duman bastırıcı alev geciktirici özelliğinin olması çok büyük bir avantaj sağlamaktadır. ATH (Alümina trihidrat) ile bağlantılı birlikte alternatif olarak artan şekilde kullanılmaya başlanmıştır. Çünkü bu iki madde halojen olmayan bir formülasyona sahip olup yanma koşullarında daha az duman ve daha az zehirli madde çıkmasını sağlamaktadır. Tabi ki yangını tamamen yok edemiyoruz/önleyemiyoruz ama çinko boratta halojenlerin olmaması dolaysıyla büyük bir avantaj. Çinko borat ile birlikte bor ürünlerini (Diğer alev geciktiriciler ise borik asit, boraks pentahidrat, boraks deka hidratır) de kullanılmaya başlanmıştır. Tekstilden borularda kadar her alanda bu ürünü kullanabiliriz. Ayrıca böcek öldürücü yönü de boyalar ve ahşap aksamlar için önemli bir potansiyel gösterebilir. Bunların standardının gözden geçirilmesi gerekliyor. Türkiye’de çinko boratın polimerlere uygulanabileceğinin 500 bin dolarlık bir kompozit pazarı olduğu ifade edilmektedir. Ayrıca, emprenye sanayinde boyalarda ve plastiklerde antifungal ve yanının geciktirici olarak önemli bir pazar potansiyeli mevcuttur. ETİ MADEN’in 10.000 ton /yıl kapasiteli çinko borat yatırımı devam etmektedir.

SELÜLOZİK YALITIM, ÖRNEK CELLUBOR:

Bir diğer konuda selulözik yalıtım Türkiye’de dikkate alınmamış durumda. Selulözik yalıtında, boraks pentahidrat, borik asit, PVC’de çinko borat, baryum metabolarot, bor fosfatar ve amonyum fluoborat, Tekstilde ise boraks ve borik asit formunda kullanılmaktadır. Yine bir şirketin AR-GE çalışması sonucunda arşırmıa konularını ortaya çıkan bir ürün Cellubor. Püskürtme sistemi ile yapılar, canlı yüksek bir performans sağladığı söyleniyor. m3 başına %19 oranında bor (borik asit+boraks) katkısı var. Isı, ses ve yanının yalıtımının üçünün birlikte yapabileceğini söyleniyor. Mantolamaya göre %25 daha fazla yalıtım sağladığı düşünülüyor. Isı yalıtının %70’lere çıktığı, hijyenik ve çevre dostu ürün olduğu belirtilmektedir.

BORLU ÇELİK: Çelikte ilave edilen çok düşük oranlardaki bor, hem adi karbon çelikleri hem de alaşım çeliklerin sertleşebilirliğini arttırmaktadır. Bor, çelikin sertliğini karbür oluşturmak suretiyle arttırmaktadır, diğer karbür yapan elementlerle kıyaslandığında, çelik sertliğini artırmak için çok az bor gerekmektedir. Sertleşmeyi artırılmak için çelik için 5-15 ppm (maximum 30 ppm) bor ilave edilmektedir. Böylece çelide ilave edilen diğer sertleştirici elementlerin (karbon, manganez, krom, molibdenyum vb.) sertleştirme derecesini de arttırmaktadır. Mikro alaşım çeliklerde %0.001-0.003 arasında bor ilave edilmesi ise bu çeliklerin yapısında gerek duyulan Ni, Cr ve Mo miktarlarını düşürmektedir. Ostenitik çelikler % 0,0005 oranında ilave edilen bor, çelikin yüksek sıcaklık mukavemeti ile sürünme mukavemetini iyileştirmektedir. Yüksek hız çeliklerinin kesme performansını artırılmak için bu çeliklere de bor ilave edilmektedir. Bor, haddelenmiş veya tavanlanmış haldeki çeliklerde, diğer karbür yapıtlar gibi çelikin sertliğiğini artırılmakta bu nedenle borla sertleşti-
II. OTURUM
SANAYİNİN TUZU BOR

rilmış çelikleri işlemek daha kolay olmaktadır. Borlu çelikler ilave bir ısıl işlem gerektirmemekte bu da bor kullanımının diğer bir avantajını oluşturmaktadır.

Borlu çelikler, mevcut durumda otomotiv endüstrisinde kullanılan en yüksek mukavemetli malzemedir (>1000 MPa).* Borlu çelikler dünyada çok büyük gelisim göstermeye başlamış. Öyle ki ppm %1’lere kadar değişen bor ilavelerine rağmen 3–4 kat kadar yüksek mukavemet gösterdiği söyleniyor ve arabalarda özellikle kazalarda güvenlik artırmak amacıyla kullanımı artmaya başlamış.

Ultra yüksek dayanıklı çelik (Ultra high steel strength -UHSS)** yandaki Volvo X90 model gövdede gördüğümüz kırmızı renkli kısımlar borlu çelik. Bu otomobilin gövde ağırlığını %40’ı borlu çelikten üretmiş. Volvo’nun eski modellerinden 5 kat daha dayanıklı.*** Ve aynı zamanda üretim maliyetinde düşüş ve çok daha hafif olmasına rağmen önemli oranda yakıt tasarrufu sağlıyor (örneğin araba gövdesindeki %30 ağırlık azalması %15-20 oranında enerji tasarrufu sağlamaktır. Grafikten de görüldüğü üzere; mukavemet ve performans değişmeden, %10-45 arasında borlu çelik kullanılarak ağırlık 30 kg’a kadar azaltılabilmektedir. Borlu çelik (UHSS) kullanımı ile ağırlığın %60-70 kg’a kadar azaltma potansiyeli mevcuttur

Volvo (Semcon) raporlarına göre 2014 yılı itibariyle arabanın ağırlığındaki 60 kg’lık azalma; CO2 emisyonlarını da km başına 120 gram azaltmaktadır. Borlu çelik tüketiminin otomotiv sektöründe kullanımının artması ile özellikle askeri alandaki gelişimine paralel ferro bor tüketiminin gelecekte artacağı tahmin edilmektedir. Demir çelik sektöründe tozlaşan cürufa potada Bor Ürünü ilave

* Yüksek sertliği nedeniyle işlenmesi, kesilmesi vb. hususlarda sorunlar yaşanmakta, bu amaçla yeni teknikler geliştirilmektedir.
** https://www.stle.org/assets/document/AUHSS_article_from_TLT.pdf
edilerek kompakt yapida cüruf elde edilmesinin bor ürünleri için önemli bir tüketim potansiyel alanı olduğunu Murat BİLEN arkadaşı anlattı. Diğer taraftan, borlu çelikin kırılganlık vb sorunlarının ileri vadede borlu kompozitlerin de katkısıyla çözülebileceği düşünülmektedir.

SERT VE YUMUŞAK MIKNATISLAR: Sert ve yumuşak manyetik malzemeler içinde bor tabanlı alaşımlar önemli bir yer tutmaktadır. Yumuşak manyetik malzemelerde metal camları olarak bilinen amorf yapıdaki Fe-Cu-Nb-Si-B (FINEMET), Fe-Nb-Zr-B-Cu (NANOPERM), Co-Fe-Nb-Si-B (HITPERM) gibi malzemeler ticari olarak büyük miktarlarda üretilir ve kullanılır. Sert manyetik malzemelere en önemli örnek kalsıc miknatıslardır.

KALICI MIKNATISLAR (Nd Fe Bor): Özellikle sert manyetik malzemelerde NdFeB şu ana kadar bilinen en üstün manyetik özelliklere ve ticari olarak büyük bir paza sahiptir.” Neodmiyum Demir Bor kalsıc miknatıslar geleceğin ürünlerinden ve hayatımıza girmiş durumda. Kalici miknatıs kullanım alanları her yerde evimizdeki eşyalar buzdolabımızı kadar askeri alandandı yine savunma sistemlerine kadar her alana girmiş durumda. Elektrikli araçlar, otomotiv, enerji, rüzgar türbinleri, askeri alanlar, uzay, MRI cihazları, bilgi teknolojileri gibi çok önemli kullanım alanları var.”” Ankara Üniversitesi Fizik Mühendisliği Bölümünden çok değerli Prof. Dr. Yalçın ELERMAN Hocamız aramızda katkılarını alabiliriz. Bir ton Nd Fe Bor miknatıs üretmek**** için 1 kg bor kullanılıyor (300-330 kg Nd, 600-690 kg Fe, 1 kg bor). Dünya neodmiyum tüketimi***** 2010 yılı 995 ton iken 2015 yılında 3.487 tona, 2020 yılında ise 13.763 tona erişmesi beklenmektedir. Ferro borun diğer önemli tüketim alanı olan kalsıc miknatıs pazarında yıllık %15 büyüme beklenmektedir. Çin’de NdFeB miknatıs üretimindeki artışına paralel olarak (hibrit taşıtlar, rüzgar jeneratörleri, elektrikli taşıtlar, mikro motor endüstriindeki kullanım doğrultusunda) da düşük karbon ve ultra düşük karbonlu ferro boru olan talepte artış olacağını tahmin edilmektedir. 2014 yılında yaklaşık 60.000 ton olan kalsıc miknatıs pazarının 2020 yılında iki katına; 8,5 milyar $ olan kalsıc miknatıs pazar değerinin ise 12,5-13 milyar $’a çıkması beklenmektedir. Pazarın %80’i Çin tarafından kontrol edilmektedir.****** (Dünya

* Prof.Dr.Yalçın Elerman, Bor Çalıştayı, 2011 (http: // www.ssm.gov.tr , 2011 sunumu,)

** http://www.on5yirmi5.com/haber/bilim-teknoloji/teknoloji-firmalari/4078/turklerden-cigir-acacak-bulus.html

*** Prof.Dr.Yalçın Elerman, Ankara Üniversitesi Fizik Müh.Bölümü, Manyetik Araştırmalar Lab, 2014

**** Kaynak: Rare Earth Metals, Big Ideas and Fundamentals Workbook,Etimine

***** Matthew Hart; “EVALUATING UNITED STATES AND WORLD CONSUMPTION OF NEODYMIUM, DYSPROSIUM, TERBIUM, AND PRASEODYMIUM IN FINAL PRODUCTS”, www. reportlinker.com, 2014

****** Elektrik motoru için üretilen kalsıc miknatıs fiyatı 100 gr 3800 TL (Prof.Dr.Y.Elerman)

TOYOTA HİBRİD SİSTEMLERİ:**

I. Motor Kalıcı Borlu Mıknatıs + II. Motor Benzin: Toyota Prius’u sordum. Çalışma sistemi nasıl diye. Çünkü bu arabada sürekli borlu magneti var. Çift motorlu. I.Motor borlu mıknatıs, II. Motor benzinle çalışmakta. İlk 50 km’de şekil de görülen borlu kalıcı mıknatıslı motor kullanılıyor. Çok sessizmiş. 50 km’den

* Elerman Y., AÜ Fizik Müh.Bölümü 2014 (Sözlü Bilgi)
** Kaynak : Atamer M., 2014, Rüzgar Enerjisi Yatırımcıları İşadamları Derneği (RESYAD)
*** ETKB’lığı 2020 yılında; 2012 yılında %2,4 olan rüzgâr enerjisinin 2020 yılında %11,6’ya; güneş enerjisinin payının ise %64,5’e çıkmış ise nosso risklerini öngörmüştür. Buna karşın yatırım ve işletme maliyeti oldukça yüksek olan insan sağlığı açısından yüksek risk içeren nükleer, flora ve faunayı yok eden HES’lere, doğal gaza ve kömür ayrılan pay daha yüksektir.
**** Toyota Teknik servis, sözlü görüşme, 2014
sonra benzinli sistemle çalışan ikinci motorda devreye giriyormuş ve bu sistem sayesinde 100 km’de 3,5-4 litre benzin tüketimi varmiş. Normalde bu 1,8’de 10 litre imiş. Çok yüksek oranda yakıt tasarrufu sağlıyor. Çok sessiz çalıştığı için trafikte fark tasarrufu sağlıyor. Motor sesine alışmış halkı nasıl uyarabiliriz Amerika’dan çalışma başlamış. Hibrit sistem çalışan arabanın ilk seri üretim 1997 yılında başlamış. Toyota Yaris ve Prius modelinde kullanılmakta. 17 yılda toplam 7 milyondan fazla hibrit otomobil satış gerçekteştirilmiş (Türkiye’de 600 adet satılmış). 2015 yılında Toyota’nın Avrupa’daki B ve C segmenti satışları içinde hibrit satışlarının oranının %50 seviyesinde olması; 2020 yılında da Toyota’nın tüm Avrupa araç satışlarının %50inin hibrit olması planlanmaktadır.

MANYETİK SOĞUTMA ÇEVRE DOSTU TEKNOLOJİK DEVRİM**

Ankara Üniversitesi’ndeki çok güzel Manyetik Soğutma Laboratuvarındaki ça-

* www.marketline.com
II. OTURUM

SANAYİNİN TUZU BOR

II. OTURUM SANAYİNİN TUZU BOR

85

Manyetik Soğutma Kullanım Alanları: Gıda koruma teknolojisi (evler, süpermarketler, restoranlar ...), dondurulmuş gıda teknolojisi (süpermarketler, gıda işleme teknolojileri), klima teknolojisi (evler, alışveriş merkezleri), gaz sivilaştırma teknolojisi (hidrojen, doğalgaz, propan, amonyak, bütan), zirai soğutma teknolojisi (tahil kurutma), endüstriyel soğutma teknolojisi (şeker arıtma, içki damıtma), atık ayıklama ve işleme teknolojisi (kimyasal, nükleer, ziraat); ısı pompaları; Savunma sanayinde (küçük ve sessiz çalışan sistemler birçok alanda kullanım potansiyeline sahiptir): elektronik devrelerin soğutulmasına, uçakların ısı salınımının indirgenmesinde; gemilerde, uydusistemlerinde, radarlarda; askeri uygulamalarda istenen dayanıklılık, ucuşluk, taşınabilir olma, kompakt olma gibi özelliklerin hepsine birden sahiptir ve bu yüzden askeri alanda soğutma amaçlı kullanılan chiller'in yerini almaya adaydır.

Çalışmalar da hocamın verdiği bilgilere göre yüksek enerji tasarrufu, yüksek verim, çevre dostu ve daha ekonomik olan bu teknoloji enerji bağımlılığının azaltılmasına de katkı yapar niteliktedir. Tüm sistemlerimizi** düşününce hem iklimlendirme sistemleri hem arabalarda, ısı pompaları, savunma sanayii neredeyse her

- Gaz sıkıtırma soğutma teknolojisine göre %50’ye varan enerji tasarrufu sağlamaktadır,
- Yüksek Verim: Yüksek COP geleneksel gaz soğutmalı soğutucularda Carnot verimi %40 iken manyetik soğutma teknolojisinde carnot verimi %70’lere çıkmaktadır.
- Çevre dostu teknolojik yenilik: Çok sessiz çalışmaktadır ve manyetik soğutma gaz kullanılmamaktadır: Floran içermeyen soğutma sistemi nedeniyle Sera gazı etkisi yoktur. Mevcut geleneksel sistemlerde; gaz sıkıtırma kompresör teknolojisinin temel malzemeleri olan kloroflorokarbon (CFC) ve hidrokloroflorokarbon (HCFC)’ın çevreye zarar vermemektedir (Kyoto Protokolü hedeflerine katkı sağlar nitelikte).
- Ekonomik:
 a) katı faz soğutucu,
 b) küçük sistemlerde kullanılabilme olanağı,
 c) kolay ısı -değişim tokusu, daha az hareketli parça sahibi olması ve düşük işletim frekansı nedeniyle düşük maliyet ve düşük bakım maliyeti sağlaması ve daha uzun kullanım süresine sahip, düşük basınçta çalıştığı için klimalarda ve araç soğutmalarda büyük öneme sahip olup diğer alternatif soğutma teknolojileri yanında ön plana çıkmaktadır.

MANYETİK SOĞUTMA – KLİMA SİSTEMLERİ:"

ASELSAN-REHİS üniversite-sanayi işbirliği projesi kapsamında, Prof.Dr Y. ELERMAN Başkanlığındaki proje ekibi tarafından geliştirilen manyetik soğutucu prototipi 50 Watt soğutma gücüne sahiptir. Doğrusal çalışan bir sistemdir. Bugüne kadar geliştirilen doğrusal manyetik soğutucu prototipleri ile karşılandığında önemli ağır koşullara dayanıklı olması, kolay tasnILognediği gibi

** http://www.eng.ankara.edu.tr/?p=6771
II. OTURUM
SANAYİNİN TUZU BOR

Dünya buzdolabı pazarının büyüyor 2018 yılında 38 milyar $ ulaşacağı tahmin edilmektedir. Gerek enerji politikaları ve gerekse soğutmalı sistemde kullanılan sera gazi etkisi yaratan gazların azaltılması yönelik mevzuat düzenlemeleri soğutma sistemlerinde manyetik soğutmanın tercih edilmesi yönünde önemli avantaj sağlamaktadır. Gelişmiş ülkelerde, ev tipi buzdolapları tüm elektrikin %5 ila %7’sini tüketir.” Üreticiler artık yasalar gereği mümkün olan en düşük enerji tasarruflu buzdolapları üretmek zorunda olsa da, geleneksel buzdolapların mutlak tasarrufu yaklaşık %17’dir. Manyetik soğuma, ultra tasarruflu buzdolaplarını herkes için uygun fiyatla hale getirebilir. Dolayısıyla, manyetik soğumanın düşük maliyet ve yüksek verimlilik kombinasyonu, herkesin enerji faturasını düşürecek ve aynı zamanda ev tipi soğutmadan kaynaklanan dolaylı

** http://www.achrnews.com/articles/127385-global-ac-market-starting-to-warm-up
**** http://www.frisbee-project.eu/tr/consumer-articles/156-manyetik.html
sera gazı emisyonlarını azaltacaktır.

Magnezyum Diborür, Süperiletkenler:

Magnezyum Diborür;
- MgB₂ süper iletkenlik telin içine konulmakta
- 1 kg magnezyum diborur üretmek için yarım kg elementel nano bor gerekmekte.
- 1 kg tel için 500 mg nano bor kullanılmakta.
- CERN, ITER ve Hindistan’da füzyon araştırmasında denenmesi planlanmakta
- Tek bir MRI cihazında 200 km tel, 100 kg nano bor: 100 bin $ x Dünyadaki 60.000 tane MR cihazı
- Buzdolabını soğutma da kullanılan He gazı rezervleri tükenmekte, helyum fiyatı yüksek
- Sorunlar: Sentez yöntemi farklı, Standart yok, reçete gerekli

Magnezyum diborürün diğer süper iletkenlere göre avantaj ve dezavantajları ise; sıvı helyum yerine sıvı hidrojen ile soğutmanın yapılabilmesi, kolay üretim yöntemi, daha hafif olması ve daha uzun tel çekilebilmesi (max. 40 km), bileşenlerinin ucuz ve kolay bulunabilirliği gibi avantajlarının yanı sıra ucuz ve kaliteli bor temininde yaşanan sıkıntılar, tel üretim teknolojisindeki teknik problemler, Ni gibi metal kullanımından dolayı fiyat artış ise dezavantajları arasında sayılabilirmektedir. Kuantum kilitlenme sayesinde 2 mm’lik süper iletken bir disk ile

* Kaynak: Dr. Selçuk Acar, Pavezyum A.Ş., 2014
I tonluk bir otomobili havaya kaldırmak için ilgili yapılarla birlikte AR-GE çalışması yapmasına fayda görülmektedir. MgB₂ kullanılabileceği potansiyel uygulama alanları, Ulaşım-Maglev trenleri, Sağlık – MRI Cihazları, Enerji-Rüzgar Türbinleri (>10 MW), Süper iletken mknatıslar- ITER, Güç aktarım sistemleri, Elektrik motorları, Arızalı akım kesme üniteler, vb.

2015 yılında toplam Dünya çapında 628 milyar dolara ulaşacağı beklenen global elektronik parça ve süper iletken pazarının, ** 372 milyar doları süper iletkenlere aittir. Ayrıca süper iletken pazarının 2012-2020 arasında yaklaşık 8 milyar dolara ulaşacağı düşünülmektede. MRI*** cihazlarında helyum yerine kullanılabileceği söyleniyor. GWEC verilerine göre 2020 yılında Dünya enerjisinin %3’ü rüzgâr türbinleriyle karşılanacak;

ENERJİ SEKTÖRÜ – HÜCRE YAKITLARI – HİDROJEN DEPOLAMA:

Sodyum Bor Hidrür (NaBH₄): üreticileri ABD (Rohm&Hass Company, Chemical Spesiality Busines); Finlandiya (Fine Chemicals, Pulp Chemicals, Kimi-

* http://www.kuark.org/2014/03/kuantum-levitasyonu-ve-kuantum-kilitlenme/
**** Bor hidrürler, boranlar (BnHn+4 veya BnHn+6) ve metal bor hidrürler (MeBH₄) olmak üzere iki kısma ayrılır.
ra Pulp&Paper); - Hollanda (Rohm&Hass Company); Rusya (Aviabor). Dünya çapında sadece 'Schlesinger' yöntemi ile 20.000 ton/yıl SBH üretilmektedir. Çin’den alınıyor. Fiyatı: 20-21 $ /kg; (Diğer konuşmacıların bölümlerinde bu konu yer almaktadır). Yakıt Pillerinin çok yaygın kullanım alanları vardır. Yakıt Pili için pazar sınırsızdır.’

LİTYUM BOR HİDRÜR - HİDROJEN DEPOLAMA (AB Projesi) : Lityum Bor Hidrür Gaz olarak depolanması öngörülmektede. Prototip üretilmiş olup bu konu üzerindeki çalışmalar devam edilmektedir. Proje ile hedeflenen malzeme fiyatı < 50 Avro /kg). Proje ile hedeflenen sistem fiyatı ise 500 Avro /kg H2 depolama.”

CAM SEKTÖRUN: BÜYÜK PAZAR.

CAM YÜNU (YALITIM (İZOLASYON) TİPİ CAM ELYAFİ): Üleksit ve borosilikat, yüksek kalite yalıtım amaçlı cam yunu üreticileri için kritik olan iki temel bor ürünüdür. %4-5 oranında bor oksit (B₂O₃) ilavesi camın ergime sıcaklığını düşürmekte, yeniden kristalleşmeyi önlemekte ve üretilen elyafların dayanıklılığını arttırmaktadır. Cam eyaflı, kimyasal reaksiyona ve suya dirençli, biyolojik olarak çözünebilir. İısı ve ses yalıtımı amacıyla kullanılmaktadır. Cam eyaflında boratların en önemli rolü; en önemli ölçüde malzememin yalıtım performansını artırmak için kılıflı kılabilen absorbansında artırır. Enerji tüketimini dolayısıyla CO₂ emisyonlarını azaltmaktadır. İnşaat sektörü cam yunu tüketiminde en önemli sektördür. Konutların, ticari ve endüstriyel (%10’u) yapılışlarının yalıtımında, isıtma, sıcak ve soğuk su sistemleri, boru, tank, kazan ve türbin, gemi ve petrol kuyularında işi ve akustik yalıtım amacıyla kullanılmaktadır. AB’dede

* Fatma Gül Boyacı, TÜBİTAK MAM, 2014
** http://bor4store.hzg.de/, http://www.fch-ju.eu/
binalarda bina kimlik kartlarına göre üretim yapılmakta ve izolasyon ürünlerini inşaat aşamasında bina inşaat malzemeleriyle birlikte direk kullanılmaktadır. Türkiye’nin enerji bağımlılığını azaltmak ve enerji verimliliğini en üst düzeyeye çıkarmak için acilen sistematik bir yaklaşımı güçlendirilmiş ve enerji tasarrufu sağlayan, çevre dostu bina inşaatlarına yönelik mevzuat geliştirilip uygulamalıdır. AB ülkelerinin 2013 yılı izolasyon tipi cam elyafı üretimi 664 milyon ton olarak gerçekleşmiştir.

Navigant Research’e göre 2013 yılında 138,2 milyon m² olan Dünya konut stoku%24 oranında büyüyerek 171,3 m² ye ulaşacaktır.

TEKSTİL TİPİ CAM ELYAFI:

TEKSTİL TİPİ CAM ELYAFI:

E-glass’in iki ayrı tüketim kompozisyonu;
1. Takviye/güçlendirici amaçlı üretilen cam elyafı (FRP veya RFG) (0-10% B203)
2. Elektronik devreler ve havacılık uygulamalarında (bilgisayar, elektronik tip cam elyafında (yarn) (5-10% B203). Tekstil tipi cam elyafı (TFG), yüksek çekme ve çarpma dayanımına sahip, kimyasal reaksiyonlara karşı oldukça dirençli, hafif ve düşük maliyetle üretilen bir malzemedir. Nihai kullanım

amaçlarına göre filament, iplik gibi çeşitlerde üretilmektedir (yarn, roving, chopped strand, woven and mat textiles and milled fibers).

Düşük alkali özelliğine sahip “E-camı” en yaygın tüketilen elyaf türüdür. Uygulama proseslerindeki düşük kırılınanlığı nedeniyle Dünya'da cam elyaf tüketimini yaklaşık %90’ını E-camı oluşturur. E-camı kompozisyonunda %12’ye kadar bor oksit (B₂O₃) bulunmaktadır ve nihai kullanım amaçlarına göre filament, iplik gibi çeşitlerde üretilmektedir.

Cam elyaf takviyeli plastik sektörü %8 büyümektedir. Rüzgar türbin kanalalarında cam elyafı %51 oranında girdi sağlanmaktadır. 1MW Rüzgar santralı için 6
ton cam elyafı tüketilmektedir. Global güçlendirici fiber pazar üretim miktarı 4,8 milyon ton ve 12 milyarlık bir pazar olduğu ve bunun 4,5 milyon ton (%94) ve 7 milyar ($)’lık miktarının E, ECR, H, R ve S tipi cam elyaflarına; 0,3 milyon ton ve 5 milyar dolarlık geri kalan kısmın ise aradım, karbon, UHMPWE tipi üst kalite takviye edici elyaf sektörüne aittir. Owens Corning’e göre 7 milyar $’lık fiber glass pazarının dağılımı şu şekildedir: %6 rüzgâr, %35 inşaat (konutlar ve su taşıma ve depolama sistemleri), %17 (cihazlar, elektronik, recreation), %14 Endüstriyel (Fabrikalar, Madencilik, Offshore platformlari), %28 taşıma (arabalar, otobüs, kamyon, tren, denizcilik).

Türkiye’nin demiryolu ticaracılılığında hızlı tren, hava, kara ve deniz araçları için borlu fiber glass ve kompozitlerle ilgili sanayi – üniversite işbirliği kapsamında AR-GE çalışmaları daha fazla yapmasına fayda görilmektedir. Otomotiv sektörünün cam elyaf ve kompozitler için cam elyaf veya kompozit uygulamaları bağlamında potansiyel pazar hacmi için örnek (kaldi ki otomotiv sektöründe borlu manyetik soğutma, motorlar, hiçre yakıt sistemleri dahil olmak üzere tüm aksamalarında kullanılabilece potansiyeli mevcuttur) vermek istersek G8 ülkelerinin küresel ölçek teke otomotiv sanayi hacmi Toyota hibrit otomobil bölümünde de verildiği üzere global ölçekte 5 trilyonun üzerinde ve 90 milyon” 2009-2013 arasında %96 oranında büyüyerek 728.4 milyar $’a ulaşmıştır. 2018 yılında ise 902,2 milyar $’a ulaşması beklenmektedir. G8 ülkeleri içinde ABD otomotiv endüstrisi 229,2 milyar $ ile birinci olup 2016 yılında ABD 309,2 milyar $’a ulaşması beklenmektedir. 2016 yılında Japonya otomotiv sanayinin 204,4 milyar $ ile ikinci

* Cam Elyaf A.Ş., 2014
ve Almanya’nın ise 125,5 milyar $'lık hacim ise üçüncü olması beklenmektedir.

![Graph](image)

Owens Corning’e göre;

1. Global takviye edici fiber pazarı 4.8 milyon metrik ton ve 12 milyar $'lık hacme sahiptir (miktar bazında 4,5 milyon tonu %94’ü, değer bazında %58’i 7 milyar $);

BOR FİBERLERİ / HAVACILIK VE UZAY SEKTÖRÜ

Bor fiberleri tek başlarına kompozit sayılabilmektedir. Bor fiberlerinde yine Ümit arkadaşımız anlattı. Bor fiberleri yüksek mukavemetli alüminyum kompo-

* http://www.ijetae.com/

** Bor Fiberinin genel özellikleri; çekme mukavemeti 3.600 MPa, Basma Dayanımı (est) 6.900 MPa, sertlik(Knoop) 3.200, yoğunluk 2.57 g/cm³
zitlerden 3 kat daha güçlü. Güçlendirilmiş yapısal kompozitler için bor fiberleri, satılan bor fiberleri genellikle 100 µm veya 142 µm çapındadırlar. Sürekli ince filamanlar şeklinde olan bor lifleri, güçlendirici yapısal kompozitler için kendi köklü kompozitlittir. Özel ağırlığı yaklaşık 2,6 bor fiberleri 0,10 ila 0,15 mm arasında değişir. Çekme dayanımları 3.450 MPa'dır. Elastisite modülleri yaklaşık 0,5 milyon MPa'dır. Bor lifleri, başlıca alüminyum veya epoksi matrikslerde kullanılmaktadır. Tek eksenli bor-alüminyum kompozitler, 758 MPa-1378 MPa üzerinde çekme dayanımları sahiptir. Mukavemet-ağırlık oranları yüksek mukavemetli alüminyum aksileririndan yaklaşık üç kat daha fazladır. Bor bileşikleri, özel cam yapımında ve eriyen metallerde oksitsizleştirme malzemeleri ve fluks olarak kullanılmaktadır. Farklı değerli sahip olan bor silikon ve karbon gibi bileşiklerin oluşturulması için çok büyük bir kapasiteye sahiptir. Bor atomu merceği şeyle sahiptir ve iki bor atomu gibi davranan ancak çift halka olarak hareket eden güçlü bir elektromanyetik bağ yapabilir. Bor nitörü ilgili bölümdede de değinildiği üzere; bor nitörü nano tüplerden üretilen bor fiberlerin çok yüksek kullanım potansiyeli mevcuttur. 800 milyon tonluk global yapısal malzeme sektörünün %1-2’sine karşılık gelen 9,2 milyon ton ve 21 milyar dolarlık kısmını kompozit malzeme sektörü aittir.

* Kaynak: TAI, 2014

KISITLAR – ENGELLER:

Bor içeren yapışal malzemelerin maliyetlerinin çok yüksektir, havacılık ve uzay uygulamalarına kısıtlamalar sebebiyle olmaktadır.

1. Üretim maliyetleri, getirdiği mekanik ve yapışal avantajların yanında çok yüksek kaldığından ticari kayıpların olmadığı projelerde kullanıma uygun dur.

2. Her türlü malzemenin, havacılık sanayiinde kullanılabilmesi için gereklilik şart, seri üretim sonunda elde edilecek malzemenin standart üretim ürünü olması, üretim sürecinin yapılacak niteliklilik çalışmalarının sonuçlarına uyumlu tekrarlanabilir özellikleriyle ürün vermesidir. Hazır ticari havacılık
sanayi ham maddeleri ve malzemeleri bu sebeple hep sertifikalı ve standart ürünlerdir.

3. Sertifika sahibi olmayan ürünler ticari ve uluslararası havacılık kurallarının uygulandığı uçuşu elverişlilik sertifikası alınması gereken hava araçlarında hiçbir şekilde kullanılamaz.

BOROSİLİKAT CAMLAR: Borosilikat camlar her zaman hayatımızda, önemli oranda kullanılmaya devam edecekler. Borosilikat camın en önemli özelliği termal şoklara ve yüksek ve düşük ısıya dayanımı. %5-30 arasında bor oksit (B2O3) içeren borosilikat cam üretimi, bor ürünlerinin cam sektöründeki en önemli tüketim alanlarından biridir. Borosilikat camların en önemli özellikleri, girdikleri malzemeye termal düşük ve yüksek sıcaklıklarda şoklara dayanıklılık, darbelere karşı mukavemet, kimyasal etkilere ve çizilmeye karşı dayanıklılık kazandırmalarıdır. Bu özelliklerinden dolayı borosilikat camlar, optik camlar, kimya tesisleri, ilaç sektörü, mutfak aletleri, fırın kapları, mutfak seramikleri ısıya dayanıklı kaplar, sinyal camları, otomobil farları, çamaşır makinesinin pencere...
camı, endüstriyel cam seramikler, ısıya dirençli transparan camlar ve tüpler, laboratuvar ekipmanları, ilaç şişeleri, yüksek voltaj izolatörleri, lamba camları ve güneş enerjisi sistemleri, bilgi–iletisim teknolojileri, fiber optikler gibi alanlarda kullanılmaktadır. Borosilikat camlar ve alüminosilikat camlar arasında yeralan alümino borosilikat camları termal genleşme katsayısını yüksektir; ancak bunlar kimyasallara borosilikat camlardan daha iyi dayanırlar. Bu camlar uzay araçlarının camlarında kullanılır. Borosilikat cam fiyatlarına örnek vermek isterseniz; 2 mm Yüksek Kalite Borosilikat Cam 16 $/m2 iken. 6 mm’lik 16 $/m²” dir. 8 mm 3,3 borosilikat float camın fiyatı ise (1150*1700) 2.880 $/ton’dur.

Borosilikat camlar; TFT-LCD (TV ve Tablet), Optik Camlar, Solar Tüpler, OLED (Proses vb) alanlarda hızlı gelişim göstermiştir:

Son yıllarda gelişme gösteren en önemli bor tüketim alanlarından biri de düz panel ekran (LCD gibi) camların üretimidir. Tüketicilerin tercihlerinin tüplü televizyonlardan (CRT) düz ince panel televizyonlara kayması sonucunda düz panel ekran camlarının üretimi ciddi oranlarda artış göstermiştir.

FİBER OPTİKLER

Bor, ayrıca fiber optiklerde kullanılmaktak ve böylece ışık fotonlarının iletişim sistemlerinde etkin biçimde transferi sağlanmaktadır. Fiber optikler iç çekir-

* Dimen Research Borosilicate Glass Research Center, Apr 2014.
** http://nanomarkets.net/oleds
*** AGC’s New Growth Initiatives, 2014
II. OTURUM

SANAYİNİN TUZU BOR

dek ve dış bölüm olmak üzere iki farklı kısımdan oluşmaktadır. İç çekirdek yüksek kırılma indisine, dış bölüm ise düşük kırılma indisine sahip camdan üretilmektedir. İç çekirdek, genellikle borosilikat camla ermış silikattan oluşmaktadır. Fiber optik kablolar, iletimi ışık hızıyla yani saniyede 300 bin km’lik hızla gerçekleştirirler. Borosilikatlar, kayıplarını minimuma indirerek data iletim hızlarına maksimum performans sağlarlar. Çok hızlı gelişen bir sektör, dünya çapında 2011 yılında 147 milyon km olan optik fiber üretiminin 2017 yılında 204 milyon km’ye toplam fiber, kablo ve donanımlarının da 3,42 milyar dolardan 2017 yılında 4,83 milyar dolara ulaşacağı beklenmektedir.

GÜNEŞ ENERJİSİ:
Yenilenebilir enerji politikalarının benimsenmesi güneş enerji sistemlerinin kullanımının yaygınlaşmasına dolayısıyla da borosilikat cam tüketiminin yüksek oranlarda artmasına katkı sağlamaktadır. Bor ürünleri ve borosilikat camlar açısından diğer önemli potansiyel sektörlerden birisi de güneş energisi ekipmanları sektörüdür. Solar tüp ve panel ekran uygulamaları sayesinde borosilikat cam tüketimi artmıştır. Güneş enerjisiyle ilgili ekipmanlarda çok ciddi potansiyel var. Bu pazarlar global ölçeekte büyümeye devam edecek. Ancak, bütün ekipmanlarla fotovoltaik hücreler olsun diğer tüm ekipmanlar olsun hepsin de dışarıya bağılmıyız maalesef. Ne yazık ki, dünyanın ** aksine Türkiye’nin güneş enerjisi yatırım planı oldukça

99

* FOTOVOLTAİK: (Maliyet : 1 Milyon Avro/ 1 MW) ; Schott Solar Poly 235 235w fotovoltaik güneş modülü 480$ civarındadır. %25 bor içeren, 220 kw kapasiteli vakum tube kolektör fiyatı 5-25 $; SOLAR TÜP (560 $ / TANE)

** http://bit.ly/1FRg9vp
BORLU (BAB) ÇİMENTOSU:∗∗

DAHA DAYANIKLI, UZUN ÖMÜRLÜ VE ÇEVRE DOSTU

Diğer önemli potansiyel kullanım alanı çimento sektöründe kolemanit gibi bor ürünlerinin kullanımı ile borlu çimento. BOREN ile yapılan bir çalışma sonucunda geliştirilen borlu çimento çok faydalı sonuçlar elde edilmiş ve TS 13353 patenti alınmıştır.

Kolemanit’in çimento üretimi esnasında belirli bir oranda (~%10) hammadde olarak kullanılan; düşük sıcaklıklarda pişirilmesi ile elde edilen alit içermeyen; aktif belitli çok düşük hidratasyon ısısına sahip, nihai mukavemeti ve durabilitesi yüksek ve çevre dostu bir çimento olarak tanımlanabilmektedir. Kolemanit, çimento üretiminde kireçtaşı yerine kullanılmaktadır. Kireçtaşın kalsinasyonu sonucu ortaya çıkan karbondioksit emissyonunu ortadan kaldırmaktadır. 1.050 °C’de ergimesi nedeniyle, klinkerin pişmesi sırasında sıvı fazda bulunmaktadır ve stabilizer olarak görev yapmaktadır.

* DSİ TAKK Dai., 2014
** DSİ TAKK Dai. Eğitim Sunumu, 2014
BAB çimentosu ile Portland Çimentosunun Kimyasal Faz Karşılaştırması yapıldığında; BAB çimentosunda C_3S (Alit) oluşmadığı ve Portland Çimentosuna göre Belitin daha aktif ve kararlı olduğu belirtilmektedir. BAB Çimentosunun üstün özellikleri su ile olan reaksiyonu sonucunda oluşan mikroyapı’dan kaynaklanmaktadır. Özellikle **Kapiller Porozite** oranının normal Portland’a göre daha düşük olması bu üstün özelliklere sahip olmasına neden olmaktadır. BAB Çimentosu, daha az su ihtiyacı, daha az kireç ve yukarıdaki formülasyondan da görüldüğü üzere daha fazla C-S-H oluşumu neticesinde daha düşük boşluk oranı ve daha yüksek nihai dayanım ve durabilite elde edilmektedir. Buna karşın; Portland Çimentosunda daha fazla su ihtiyacı, daha fazla kireç ve daha az C-S-H oluşumu ile daha fazla boşluk oranlı yapıya sahiptir.

FİZİKSEL VE MEKANİKSEL ÖZELLİKLER

Yukarıdaki Tabloda ki fiziksel ve mekaniksel özellikler karşılaştırıldığında; BAB çimentosu normal Portland çimentosuna göre oldukça önemli avantaj sağla-

* DSİ TAKK Dairesi Başkanlığı, 2014

102
maktadır. Gerekli durumlarda inceliğinin artırılması veya kimyasal katkılar ile erken dayanımın istediği hallerde normal Portland çimentosu gibi kullanılabilmesi mümkün görülmektedir.

- BAB Çimentosunda Hidratasyon ısısi yaklaşık 60 Cal/g iken Portland Çimentosunda yaklaşık 120 Cal/g’dir. Dolayısıyla BAB çimentosunu hidratasyon ısısi çok düşük olduğundan kütte betonlarında ön-soğutma ve ard-soğutma işlemlerinde büyük ölçüde tasarruf sağlanır (Ön-soğutma ihtiyacı ortadan kaldırılmaktadır). Kütte Betonu Ön ve Ard Soğutmasında Enerji Tasarrufu 30 kWh/m3.

- Uçucu Kül Kullanımına gerek yoktur.

- Kütle betonunda Adiyabatik sıcaklık artışı Portland Çimentosunda yaklaşık 37 ºC iken BAB çimentosunda yaklaşık 17 ºC’dir.

Yukarıdaki tablo da normal Portland Çimentonun durabilite özellikleri ile BAB çimentosunun durabilite özellikleri karşılaştırıldığında BAB çimentosunun önemli avantaj sağladığı ortaya çıkmıştır:

- Boşluk oranı çok düşük beton yapısına sahip olduğundan; dayanımı ve durabilitesi yüksek beton yapmak mümkün olacaktır. Özellikle sülfatlı ve klorürülü ortamlarda durabilitesi çok daha fazladır. PÇ’ye göre en az 2 ve/veya 6 Kat Ortam Şartlarına Bağlı Olarak Daha Fazla Kullanım Ömrünve Sahiptir.
- Durabilitenin (Dayanıklılık) en önemli parametresi beton geçirgenliğidir. Normal Portland çimentosu (CEM I 42,5) ile yapılan betona göre en az 3 en fazla 6 kat daha geçirimsiz.
- BAB çimentosu ile 275 kg/m3 ile çok geçirimsizlik sağlanırken normal Portland Çimentosu ile geçirimsizlik sağlanabilmesi için en az 300 kg/m3 Portland çimentosu kullanılması gerekmektede.
- Su geçirgenliği açısından, Çimento dozajı BAB çimentosuyla %15-30 daha azdır. Su Geçirgenliğinde; Aynı İşlenebilirlikte (15 cm) Aynı Dayanım İçin yaklaşık 40-50 kg/m3 Eşdeğer İşlenebilirlikte (10 cm) Aynı Dayanım İçin Yaklaşık 50-90 kg/m3 %15-20 Çimento Tasarrufu
- Klor geçirgenliğinde BAB çimento dozajı %20-40 daha azdır. Klorür İyonlarına Karşı Geçirimsizlik; Aynı İşlenebilirlikte (15 cm) 400 kg/m3 yerine 290 kg/m3 çimento; eşdeğer İşlenebilirlikte (10 cm) 400 kg/m3 yerine 270 kg/m3 çimento %27,5-32,5 Çimento Tasarrufu
- Yüksek Radyasyon Önleyici” BETON KÜTLE BETON: Kütle beton için düşük dozajlarda (150 kg/m³) istenilen beton sınıfı sağlanmaktadır. Göründüğünüz üzere borlu çimento yeşil ile göründüğünüz; hem normal betonda hem de baraj gibi kütle beton da çok iyi sonuçlar vermiş. Yanıdaki tablo da görüldüğü üzere; 180 kg/m³’lik beton testlerinde; BAB’lı çimento tek başına ve uçucu kül ile birlikte önemli
mukavemet sağlamaktadır. Portland çimento+uçucu kül birleşiminde 90 günlük basınç dayanımı 31,5 MPA iken BAB çimentosunda 90 günlük basınç dayanımı 38 MPA'dır. BAB çimento'nun da kullanımını gerekliyor %15 oranında kullanılan malzeme de azalma olması rağmen çok fazla beton üreticileri buna sıcak bakmıyorlar maalesef bunun bir şekilde teşvik edilmesi lazım. Durabilite özelliklileri, geçirimsizlik özellikleri çok yüksek. Aynı şekilde yolda kullanımda da çok büyük bir tasarruf elde edilmiştir. Potansiyel kullanım alanları oldukça geniş tir. : Deniz Yapıları, baraj gövde betonları ve baraj önyüzü kaplamaları, baraj dolu savakları ve nehir regülatörleri, köprüler, viyadükler, tünel ve galeri kaplamalarında, beton yollar, nükleer santraller, yüksek yapılar, büyük kapasiteli su depoları, santral binası inşaatında, rezervuar beton kaplamalarında, ince kemer ve beton ağırlıklı barajlar gibi kütte betonu kullanılmakta, önyüzü beton kaplamalı barajlarda beton kaplama ve kret duvari imalâtında, yüksek bağlayıcı SSB barajlarında kütte betonu ile ön-dökümlü (prekast) panel, galeri kapakları ve merdiven betonları imalatında, olumsuz dış etkenlere (donma-çözülme, sülfat etkisi, ıslanma-kuruta vs.) maruz kanal kaplama betonları dahil tüm kanal kaplamalarında, Şüt kanalları, sifonlar gibi diğer yapılarda, geçirimsizliğin önemli bir parametre olduğu su depolarında, Aritma tesislerinde, Baraj perde, kapak ve konsolidasyon enjeksiyonlarında kullanılabilir."}

* Hidratasyon ısısı çok düşük çimento sınıfı için 7 gün için limit değer = 52,5 cal/g
DERİNER BARAJI KÜTLE BETON DENEMELERİ

Ekonomik Açılıdan:
Deriner Barajı kütle betonunda C20/25 (PÇ+UK) betonu için mevcut durumda toplamda 190 kg/m³ bağlayıcı kullanılmaktadır. Aynı malzemeler ile BAB çimentosu ile 150 veya 160 kg/m³ dozajla C20/25 betonu sağlanmaktadır. 1m³ betonda 30 ila 40 kg veya (%15-%20) Çimento tasarrufu sağlanmaktadır.

Kütle Beton (Baraj Gövdesi) Betonunun Soğutma Maliyeti 30 kWh/m³ 1 ton çimento ile yapılan 5 m³ betonun soğutulması için 5x30=150 kWh, 1 kWh=10 Cent 15 $. Durabilite Açısından Eşit Geçirimli Beton Üretmek İçin 400 kg Portland Çimentosu Yerine 280 kg Borlu Çimento toplam tasarruf % 30 sağlanmakta. Eşit Dayanıklı Beton Üretmek İçin 350 kg Çimento/1m³ Beton Yerine 300 kg Çimento/1m³ Beton Yaklaşık %15 tasarruf sağlanmakta.

BETON YOL: Tabloya göre; Ordu-Sivas Karayolu üzerinde BAB Çimentosu ile Portland Çimentosu ile yapılan Beton yoldan alınan karotların Karşılaştırıldığında 350 kg/m³ çimento dozajına karşın BAB çimentonun geçirgenliği oldukça düşük iken buna karşın basınç dayanımı Portland Çimentolu Yoldan yüksektir. BAB ile Portland Çimentoların Beton Yol Uygulaması ile Betonların Karşılaştırılması neticesinde; beton Yolda Aynı İşlenebilirlikte (6-8 cm) En az 350 kg/m³ yerine 300 kg/m³ çimento %15 Çimento Tasarrufu sağlanmakta.

Söylemek istediğim konu şu ki daha çok bir ara-ya gelmemiz gerektiğini ve birbirimizin yaptığımızdan daha çok haberler olmaz gerekıyor. Ve o haberler olmaz neticesinde bilgiyi üre- tim ve araştırmaya dönüştürmэмiz gerekıyor. AR-GE ve inovasyona dayalı bir üretim sistemi yapısı olması olumsuz olmamalıyız. Bunun dışında tüm paydaşlarla birlikte Üniversiteler, sanayi...
kuruluşları, uluslararası şirketlerle, bilim merkezleriyle sürekli işbirliği içinde olmamız gerekiyor. Tüm sistem dinamiklerini gözden geçirecek; laboratuvarlarımız ve insan kaynaklarımızı dahi olmak üzere bütün sistem dahiinde bor ile birlikte diğer sanayilerde teşvik edecek şekilde geliştirmemiz gerekiyor. Sayın Prof. Dr. Bekir Sütçü ŞAYLI hocamızı saygı ve özlemle anıyorum. Çok teşekkür ediyorum.

SAĞLIK + GÜVENLİK + ÇEVRE = DOĞAL AKTÖR TEKNOLOJİ DOSTU BOR: Tüm ALT ve ÜST SİSTEM DİNAMIKLERİ DİKKATE ALINARAK; SANAYİ KURULUŞLARI, ÜNİVERSİTELER, KOBİLER İLE DİSİPLİNLERARAŞASI YAPIDA SÜRÜTÜLEBİLİR VE ETİKİN BİR YAPIDA; ULUSAL (TÜM AKTÖRLER); ULUSLAR ARASI (AB, İLGİLİ ÜLKE KURUM VE KURULUŞLARI); BÖLGESEL (İLGİLİ PAYDAŞLAR); SEKTÖREL BİLGİ PAYLAŞIMINI AKTIVE EDECEK ŞEKILDE AR-GE INOVASYONA DAYALI YENİLİKÇİ BİR; BOR BİLGİ VE YATIRIM GELİŞTİRME AĞI OLUŞTURULMASI, YAPILAN TÜM ÇALIŞMALARIN FIRSATLAR OLÇÜSÜNDE PAYLAŞILMASI, YENİ TEŞVİK SİSTEMLERİ GELİŞTİRILMESI, AKREDİTASYON ve STANDARTLAŞMA SAĞLANMASI, MEVCUT ve YENİ MÜKEMMELİYETLIK MERKEZLERİN DESTEKLENMESİ ve GELİŞTİRİLİLİP ORTAK AĞA BAĞLANMASINDA FAYDA GÖRÜLMEKTEDİR. BİLMİ VE TEKNOLOJİ İLE ARADAKİ MESAFELE YOK OLMALI.

İlker ERTEM: Sayın Yağın DUYDU bizlere bor, sağlık ve zehirlilik konusunda bilgi verecek. Kendilerine teşekkür ederiz.

Prof. Dr. Yağın DUYDU: Sayın Başkan teşekkür ederim. Ben sabahdan beri yapılan konuşmalarından çok farklı bir konuya değineceğim. O nedenle son konuşmacı olmak nedeniyle hepinizin çok sıkıldığını biliyorum aslında ama konu biraz farklı olunca belki biraz ilgi çeker diyemeyiz. Şimdi tamamen farklı bir konu dedim. Çünkü şu anda Türkiye’nin önündeki ciddi bir problem var bor ürünlerine özellikle borik asit ve sodyum boratların içinde bulunduğu ve tek başına satmak isterseniz de Avrupa Birliğine yada diğer ülkelerle satarken tabi olduğumuz belli yönetmelikler var ve bu yönetmelikler ile ilgili de Türkiye’nin şu anda ciddi sıkıntıları var. Bu sıkıntıları anlatırken, bu yönetmelik ve sıkıntıların sağlıkla ilgisi ne onu da birbirine kombin ederek bu konuyu size aktarmaya çalışacağım. Çünkü şu anda Türkiye’nin önündeki önemli problemlerden bir tanesi, bor ürünlerinin satılmasıyla ilgili olarak.

BOR ÇALIŞTAYI 2014

108

dığını görüyoruz, borik asit ve sodyum boratların hayvan testlerinde üreme ve gelişim toksisitesi göstermesi nedeniyle. Üreme dediğimiz de anlayacağımız şey erkeklerde infertilite yapıyor, gelişim toksisitesi dediğimizde anlamamız gereken şey de doğmannış çocukta anne rahmindeki fetüs de gelişim bozukluğu, kilo kaybına ve farklı malformasyonlara neden oluyor. Bu iki etki nedeniyle özellikle CLP içinde borik asit ve sodyum boratlar “Kategori 1B” altında yani insanlarda üreme üzerinde toksik olabilecek kimyasal maddelerle birlikte sınıflandırılıyorlar. Bunun getirdiği ne, getirdiği ticaretde çok önemli çünkü özellikle kategori 1A ve 1B altında sınıflanan kimyasal maddeler için belli ticari kısıtlamalar var. Bu kısıtlamalar şu anda uygulanıyor. Ama bunun bir adım ötesi de var. Özellikle 1A ve 1B altında sınıflandırılan kimyasal maddeler için bir başsak sonrası “authorization”dir. Bunu Türkçe, ruhsatlandırma veya yetkilendirme. Yani bunun anlamı şu; 1A ve 1B’de yer alan kimyasal maddelerin bir süre sonra, bizim borik asit ve sodyum boratlarında içinde bulunduğu bu grup, “authorization”a gidecek, yani Avrupa Birliği içinde borik asitin bulunduğu bir ürünü satmak istediğinizde, Avrupa’nın “European Chemical Agency”si diye, buraya bu ürünü ben satmak istiyorum diye başvuruda bulunup buradan yetki almanız. Bu kısıtlamalar bu ürünü satmak için Avrupa’nın “European Chemical Agency”si, buradan yetki almanız veya ruhsat almanız gerekiyor. Bu güvenlik değerlendirmesinin içinde de “risk değerlendirmesi” var ve bunu yapmak da okadar da kolay bir iş değil. Şimdi sorun bu, dolayısıyla bu da ticari bir engel olarak karşımıza çıkmıştır. Peki bu sorun nereden kaynaklanıyor? Sorunun kaynağı şu; Hayvan deneylerine baktığımızda, borik asit ile yapılan hayvan çalışmalarına baktığımızda, özellikle dişilerde fetüs üzerinde özellikle de 9.6 miligram/kg dozdan sonrasında biz buna “NOAEL” diyoruz bu doza, fetüs ve vücut ağırlığında azalma ve fetüsün 13. kaburga kemiğinde kısalma var. Bu fetüs üzerinde olumsuz etkilerinin olduğunu gösteriyor, borik asitin bu dozdan sonra çıkanlardan. Erkeklerde baktığımızda özellikle çıkanla yapılan testlerde 17,5 miligram/kg üzerine çıktığımızda sırasıyla şu istenmeyen etkileri görüyoruz; sperm üretiminde azalma, buna spermatogenez de azalma diyorumuz, doğrudan doğrudan infertilitenin bir göstergesidir. FSH, LH seviyelerinde artma yine infertilite göstergelerinden testosteron seviyesinde azalma ve en son testislerde atrofi (Tablo 1).
II. OTURUM
SANAYİNİN TUZU BOR

<table>
<thead>
<tr>
<th>Grup</th>
<th>Kontrol grubu</th>
<th>Düşük maruz kalma grubu</th>
<th>Orta maruz kalma grubu</th>
<th>Yüksek maruz kalma grubu</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (204) ng Bor/g kan (ppb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrol grubu</td>
<td>49</td>
<td>< 48.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Düşük maruz kalma grubu</td>
<td>72</td>
<td>> 48.5 – 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orta maruz kalma grubu</td>
<td>44</td>
<td>> 100 – 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yüksek maruz kalma grubu</td>
<td>39</td>
<td>> 150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acaba dedik işçilerde sperm almışken DNA’sına da bakalım sperm DNA’sında...
bor maruziyetine bağlı olarak yüksek bir hasar var mı? Bütün bunları kontrol ettik. Kimlerde bu 204 işçide. Ama önce bu 204 işçiyi maruz kaldıkları bor konsantrasyonlarına göre sınıflandırdık. Özellikle kan bor konsantrasyonları bunlar (Tablo 2). Düşük kan bor konsantrasyonuna sahip kişilere kontrol grubu dedik sonra sırasıyla düşük, orta ve yüksek maruz kalan grup olarak sınıfladık ve bu parametrelerin hepsini kontrol ve maruziyet grupları arasında kıyasladık, yani gerçekten bor maruziyeti böyle bir olumsuz etki ortaya çıkarmış mı diye. Bakın bunlar testeron LH ve FSH sonuçları, 204 işçinin (Şekil 1).

Bu teklif son derece önemli idi. Neden önemli idi, çünkü özellikle borik asit ve sodyum boratlar kategori 1B altında kalmaya devam ederse “authorization” a gidecek, bundan kaçış yok. Yani her bir içine koyduğumuz ürün için Finlandiya’daki ECHA’dan ruhsat alacaksınız. Ama “kategori 2” altında sınıflandırılırse eğer bu durumda borik asit ve sodyum boratlar için “authorization”a gerek kalmayacak (Şekil 3). Dolayısı ile bu sınıflama farklı Türkiye için son derece önemli idi, ancak bundan bir sonuç alınamadı. Şu anda geldiğimiz nokta şu; borik asit ve sodyum boratlar hala “kategori 1B” altında sınıflanıyor CLP’de dolayısı ile borik asit ve sodyum boratların şurada gördüğünüz bütün ürünler etkileniyor, sonuçta otorizasyonu gidecek. Bu bir süreç meselesi yakın bir süre sonra yetkilendirme istenecek yanı borik asit ve sodyum boratları hangi ürün içinde koyuyorsanız onunla ilgili ECHA dan ruhsat alınması gerekecektir o ürünü Avrupa Birliği’ne satabilmek için. Bu önemli bir ticari engel tabi.

Şimdi bu aşamadan sonra neler önerilebilir, neler yapılabilir bu aşamadan sonra. Bu aşamadan sonra özellikle biz bir bor ülkesi olduğunu göre sağlıkla ilgili yapılacak her türlü çalışmanın ülkemizde önünün açılması lazım. Sağlıkla ilgili çalısmalara şiddetle ihtiyacımız var. Ama bana göre şu anda bulunduğumuz konum itibari en önemli konu, gelişim toksitesine yönelik epilomiyolojik çalışmaların yapılması lazım, neden önemli bu çalışmalar:

Birincisi; dünyada gelişim toksitesi ile ilgili hiç bir veri yok, Türkiye’de de yok insanlarla ilgili. Dolayısı ile biz Varşova’daki toplantıda zaten gelişim toksitesine itiraz bile edemedik, çünkü hiç veri yok. Dünya da yok bizde de yok, onun için bu çalışmaların mutlaka bir an önce yapılması gerekıyor.

İkincisi sebeb; neden önemli gelişim toksitesine yönelik çalışmalar. “Authorization” yani yetkilendirme gerçekleştiği durumda borik asit ile sodyum boratların kullanımını izne tabi olacak, buna göre borik asit ve sodyum boratların her üründeki kullanımını için risk değerlendirme istenecek bu hiç kolay bir iş değil. Özellikle epilomiyolojik çalışmalar da elde edilecek kadınlar da günlük bora maruz kalma ve bu maruz kalma neticesinde buna karşılık gelecek kan bor konsantrasyonları önem kazanacak, bu risk değerlendirmesi yapma sürecine gelindiğiinde (Şekil 4). Epidemiyolojik çalışmalar da gözlenen kan bor konsantrasyonlarında gelişim toksitesinin görülüp görülmediği konusu önem kazanacak, bu gibi verilere ihtiyacımız var özellikle “authorization”a git-
tikten sonra daha da çok ihtiyacımız olacak. Yani söylemek istediğim şey şu; özellikle kadınların günlük olarak bor'a ne kadar maruz kaldığı, bu maruz kalınan miktarın kadınlarında ne kadar kan bor'a katkıda olacağını, bu maruz kalan miktarın kadınlarında ne kadar kan bor konsantrasyonu oluşturduğu ve bu kan bor konsantrasyonları kadınlarında gerçekleştirilen toksiteline sebep olacak seviyede mi değil mi? Bunun mutlaka gösterilmesi gerekliydi (Şekil 4).

de olumsuz bir etkisinin olması beklenmemektedir, ancak bunu ispatlamamız gerekir.

Çok küçük bir dip not aslında konuşmam bitti ama çok speküle edildiği için yeri de gelmişken ben o konuya da氨基酸 getirmek istiyorum. Özellikle yazılı basın-da ve sosyal medyada ben zaman zaman bunları okuyorum borik asidin ve borik asidin bulunduğu ürünlerin cilt kanseri yaptığı başka kancerler yaptığı ile ilgili spekülasyonlar var. Borik asit kesinlikle kanserojen değildir, ne Avrupa Birliği ne Dünya kimse zaten bunu iddia etmiyor. Borik asidin kanserojen olduğu ile ilgili spekülasyon veya yazılar nereden hangi kaynaktandırıyor hiçbiri fikrim yok ama bu doğru bir bilgi değil. Bunu da söylemek isterim. Teşekkür ederim.

Geçmişte bunu engellemeye fırsat bulduğum için ve bu konuda arkadaşlarımı ile de ciddi mücadele yaparak kazandığımız için de hakikaten bahtiyar olduğumu ifade edebilirim, sevincim budur. Bir de bu konularda alışırmaya ve sonrası tekrar-le meseleyi yutturma konusunda kurulmuş olan kuruluşlar ve maalesef bunların

İLKER ERTEM: Biz de eski Ulaştırma Bakanımız Sayın Enis ÖKSÜZ Beye bu duyarlılığı için teşekkür ediyoruz. Kendisinden katılımcılara katılım belgelerini vermelerini rica ediyoruz. 2. oturumumuzda burada sona ermiştir dinlediğiniz için teşekkür ederiz.
III. OTURUM
BOR POLİTİKALARI VE STRATEJİSİ PANELİ

MODERATÖR

Muammer ÖCAL
ETİBANK Eski Genel Müdürü

PANELİSTLER
Dr. Erdemir KARAKAŞ
ENERJİ ve TABİİ KAYNAKLAR BAKANLIĞI Eski Müsteşarı

Prof. Dr. Nusret BULUTÇU
İTÜ Kimya Metalurji Fakültesi

Dr. Sedat SÜRDEM
BOREN Grup Koordinatör V.

Dr. Orhan YILMAZ
ETİ MADEN İşletmeleri Genel Müdürü

Ayhan YÜKSEL
TMMOB Maden Mühendisleri Odası Başkanı

Dr. Erdemir KARAKAŞ: Sayın Konuklar, Değerli Arkadaşlarım, Sevgili Meslektaşlarım,

Zayıf noktalarımızın başında herhalde pazarlama aşımızın rakibimiz kadar gelişmiş, donanımlı, müşteri portföyümüzün rezervlerimize kıyasla yeterince büyük olmayışı gelmektedir. Bor kıyasallarındakı düzeyimiz yanında ileri bor ürünleri üretiminde yetersizliğimiz bir zafiyet olarak görülebilir. Ancak, bu ürünlerin diğer bor ürünlerine nazaran Dünyadaki pazar paylarını maliyet bileşimi, satış oranları dikkate alındığında bu zafiyeti önemsemiyorum. Bu konu...
nusunda ETİ MADEN A.Ş.’nin tekel oluşunu güçlü yönümüz olarak sayarken, kamu kuruluşu oluşundan kaynaklananöneyme müdahale ve sınırlamalar olabileceğini de zafiyet olarak kabul etmemiz gerekecektir.

Fırsatlar konusunda dikkate alınması gereken en önemli gelişme sabahki konuşmalarda da gündeme getirildiği gibi rakiplerimizin rezervlerinin çok azalmış olmasıdır. Verilen rakamlara göre kısa bir süre sonra Bor konusunda Dünya tamamen bize muhtat kalacaktır.

Bor cevherlerimiz için yeni tüketim alanlarının bulunmasını bu konudaki önemli fırsatlardan biri olarak düşünüyorum. Bundan 30-40 yıl önce bor pazarlaması konusu konuşulurken tüketim alanlarında borun başka maddelerle ikamesi bir tehdit olarak gündeme gelir ve fiyatlar yükseltmekte, müşterileri başka madde aralarına zorlamamak gerektiği söylenirdi. Oysa o günden bu yana herhangi bir ikame olmadığı gibi tüketim alanları çok daha arttı ve her yıl daha da artmaktadır.

Avrupa Birliği konusundaki son gelişmeleri, ilgili bakanlığın gayretlerini AB’ne girişimiz için bir umit, Dünya bor pazarının üçte birini oluşturan ve bize çok yakın olan bu pazarın tamamına hakim olmak için bir fırsat olarak görüyoruz. Avrupa Birliği girişimizin bor konusu için bir fırsat olması kadar girmede sürünmede kalmasını bir tehdit olarak görüyoruz. Tabii ki bu pazarı mevcut situación devam etmek, ancak hak ettiğimiz payı alma fırsatımız kullanılmamış olacaktır.

Bor konusundaki bir başka tehdit -belki de en önemli tehdit - ise bugünkü statünün, bor cevherlerimizin devlet eliyle tek elden işletilip üretilmesine ve pazarlanmasına devam edilmesine devam edilmelidir. Bu konudaki bazı girişimler, yasal düzenleme hazırlıkları endişe vericidir.

Bütün bu tespit ve değerlendirmelerin ışığında Bor politikaları ve stratejileri tespitinde aşağıdaki hususların dikkate alınması öneriyoruz:

- En güçlü yönümüz olan rezervimizi değerlendirebilmek için çok miktarda bor kullanan yeni tüketim alanları araştırmasıdır. Bu konuda çok değerli kuruluşumuz ETİ MADEN A.Ş.’nin yaptığı ve başardığı bora dayalı deterjan üretilmesi ve bor solüsyonları ile baca gazlarının tutularak soda üretilmesi gibi araştırmalarını takdirle karşılıyorum, kutluyorum.
- Avrupa Birliği girmemiz için katkıda bulunmalı, çok gayret etmeliyiz.
- Bor cevherlerimizin devlet tarafından, tek elden işletilip üretilmesine ve pazarlanmasına devam edilmeli, bu statünün titizlikle korunması için çaba sarf edmelidir.

Beni dinlediğiniz için teşekkür ediyorum.

Muammer ÖCAL: Müsteşar Beye çok teşekkür ederim. Özetlersek, kendileri çok isabetli bir genel çerçeve çizmişlerdir ve ayrıca önerileri ile fiilen bu işin içinde

Prof. Dr. A. Nusret BULUTÇU: Hepinize hoş geldiniz diyorum. Yaklaşık yarım saat sürecek bu sunumda sizlere, kendi görüş açısından, bor endüstrimizin yapısı, gelişimi, sorunları ve geleceği yönelik uzun vadeli stratejilerinin ne olması gerektğini açıklayacağım.

Günümüzdeki bor cevherlerimizin konumu, yapısı ve tenörü aşağıdaki özetlenmiştir.

- Bor rezervleri açısından dünyanın bilinen rezervlerinin en azından %72’sine sahibiz.
- Dünyanın bilinmeyenlerine karşın bizde bilinen ama henüz deklere edilmezen rezervler de var. Cevher rezervi o kadar yüksektir ki yeni aramalara gerek duyulmuyor.
- Madenlerimiz, Dünyanın diğer bor oluşumlarının aksine (Çin, Arjantin, Şili de 3000 – 4000 m rakımlı dağ başında veya kuzey Amerika’daki kölden olduğu gibi) kuş uçmaz kervan geçmez yerde değil yemyeşil tarım alanları civardındadır. 1987-1988 yıllarında tesislerimizi ziyarete gelen bor alıcısı Japonlar, daha önce çölleri ve yüksek dağ başlarını gördükleri için şaşırmışlardı. (Bu avantaj atıklar nedeni ile dezavantaj da olabilir.)
- B_2O_3 tenörü açısından dünyanın en yüksek tenörlü bor rezervlerine sahibiz. Katı atıklarımızın B_2O_3 tenörü bile rakiplerimizin cevherlerinden daha yüksektenörlüdür.

Oluşan sonuç: Katı atık alanlarımız koruma altında tutulmalıdır.

Aşağıdaki resmi Kırka’daki cevher yatağında 1988 yılında çekmiştir. Yaklaşık %75-80 boraks dekahidrat içeren (%27-29 B_2O_3 tenörlü) tabakalı yapılı cevher Dünyanın hiçbir yerinde yok. Ortalama %24 B_2O_3 tenörlü Kırka tinkel yatağının yaklaşık 1/3 ü bu tip cevherden oluşmaktadır.

- Mevcut cevher rezervlerimizin, günümüz talepleri doğrultusunda 3-4 asır, artan talepler doğrultusunda en azından 100 yıl daha üretime sürdürebileceğini göstermektedir. Buna varlığı açıklanmayan yataklar dahlidir.
KISA BOR GEÇMİŞİMIZ

1. AŞAMA: ÜRETİMİ ÖĞRENME

İlk kimyasal bor tesisi Bandırma’da kuruldu. Tesisi kuran (Daha doğrusu kuru-maya aday olan tek firma olan) Polonyalı firmanın bor ile uzaktan yaklaşan ilgisi (ve de bilgisi) yoktu. Kurduğu düşük kapasiteli ve kesikli olarak çalışan boraks ve borik asit tesisleri üretim yapabilen ancak düşük verimli yüksek enerji harcamalı tesislerdi.

- Bu tesisler her türlü kötulemeliere rağmen bize üretim yapmayı öğrendi. Halk ağızına göre “Döke saça üretimi öğrendik.”
- Ancak döke saça üretimin bedelleri de vardı: Bedel çevreye (Manyas gölune – Kuş cennetine) zarar vermek idi. Şükürler olsun ki o yıllar üretimimiz düştü.
- Kırka’da 1975’de kurulan konsantrre boraks tesis ve 1984 de kurulan 1.bor türüleri tesisinde de döküp saçmaya devam ettik.
- Ancak 1985’lerde El atına binen yarı yolda inermiş özdeyişinin ne kadar haklı olduğu anlaşıldı ve kendi teknolojimizi kendimizin geliştirmesi gerektiği ortaya çıktı.
- 1984 de hocam Prof. Dr. Raşit TOLUN’un okuduğu bir makaleden esinle-
nerek “Acaba bu yöntemi boraks üretimine uygulayabilir miyiz?” demesi ile bor endüstrisine bodoslama girdim. 30 yılı aşkın sürece bir daha da çık-

- O acaba sözçüklerinden bir yıllık araştırma sonucu oldukça etkin olan “Bo-
 raksdeka hidrat üretiminde çözeltideki çözünmeyen maddelerin ayrılı-
 maksı için pelet flokülasyonu” tekniği geliştirildi.

- Bu yöntemin uygulandığı bir tesis “Pelet tesi” adı ile Bandırma’da kuruldu
 ve uzun yıllar boyunca çalıştı.

- Temel yöntemi biz geliştirmiştik ama uygulamada bize hiç danışılmadı ve
 ortaya ve ortaya geçtiği duruma göre çok başarılı (verimi %60’lardan %85’lere çıka-
 ran) herkezi memnuniyet döneminde uygulanan üretim yöntemi çıktı.

- Ben bu tesis uygulamaları girdim. Çünkü bu uygulamalarla “kitap kurdu ola-
 rak” nitelendirilen bizlere göre sürekli yönteme beklenen %96’lık verime
 göre başarılı bir uygulama idi. Kesikli üretim tesisinin sanırım 2005’de kaldi-
 rıldı.

 Sürekli yönteme üretim için 1984’de kurulan 1. bor türlerini tesisini ise ça-
 lıştıramıyordu.

2. AŞAMA: UYANIŞ - TEKNOLOJİK GELİŞME

Bandırma’da pelet tesisinin başarısı kendi teknolojimizi geliştirilebileceğimiz
cesaretini verdi ve o zamanki ETİBANK bu tip araştırmaları ve gerektiğinde pi-
lot tesis çalışmalarını destekledi.

- 1987’de boraks üretiminde tinkleme ceherindeki killeri ayırmak için flokül-
 lasyon yöntemi geliştirildi ve Kirka’da uygulamaya geçildi. Tesis kapasite-
 si 15.000 t/y dan 4 yıl içinde kademe kademe artarak (55, 90, 120 bin ton)
 160.000 t/y değerine ulaştı. Yeterli yatırımla bu sonucu 1 yıl içinde de ulaşa-
 bilirdik. Ancak 10-12 günlük geri dönüş süreli olarak hesaplanan bu yatırı-

122

- Emet’te borik asit üretim tesisini kurması ile ilgili uluslararası ihale ihale ilanına hiçbir cevap gelmedi. Bu nedenle bu görevi üstlendik. Kolemanitten sürekli yöntemiyle borik asit üretim prosesi 1 yılda geliştirildi ve 1 yıl kadar süren mühendislik çalışmaları sonucu 100.000 t/y kapasiteli tesis Emet’te uygulandı (Emet 1. Asit borik tesi). Bu tesis %90-92 verimle çalıştırılmaktadır. 100.000 t/y kapasiteli 2. tesis bu tesisin benzeridir.

Elde edilen deneyimlerle borik asit için henüz uygulanmayan daha yüksek verimli üretim yöntemlerini de geliştirdik.

3. AŞAMA: ÜRETİMİN ARTIRILMASI

- Dünya bor tüketimi yılda ortalama %2,5 artmaktadır. Bu artış sürekli değil tabandır.
- 2001’de yazdığım “ Özelleştirilmenin gölgesindeki borlarımızın durumu” başlıklı raporumda bu konuya dekajmiş ve üretimi nasıl planlalayız sorusuna cevap aradığım.
- Beklentilerim aşağıdaki gibi idi ve yeni kurulan boraks pentahidrat tesisleri bu beklentiye uymaktadır. Kurulan tesisler parantez içinde gösterilmiştir.

250.000 t/y kapasiteli 4. boraks pentahidrat tesisı 2010’da tamamlanmıştır. 500.000 t/y boraks pentahidrat tesisı 2016’da tamamlanacaktır.
• Borik asit tesislerinde ise uyuşum yoktur. Gerçekte 2014 de 300.000 t/yıl kapasiteye erișen Emet ve Bandırma borik asit tesislerinin zaman zaman ürete

time ara vermesi kapasite fazlalığına işaret etmektedir. Ancak lider olmak istiyorsak kapasite fazlalığı da gerekliidir. Bu fazlalık rakiplerin bekle

menyen sorunları nedeni ile üretimlerinin düşüşünde önem kazanır ve piyasadaki boşluğu doldurur. Böyle bir duruma 5-6 yıl önce Rusya’da tesislerin bilm-

mediğimiz bir nedenle üretim yapamaması sırasında karşılaşılmıştır.

4. AŞAMA: ÜRETİMİN SÜRÜDÜRÜLEBİLİRLİĞİ

1995’li yıllarda verimlerimiz düşük ama üretimimiz de düşündü. Atıklarımız günümüz ölçülerine göre çok azdı. Ancak o yıllarda bile bilin-

cisiz olarak çevreye zarara vermedik mi? Suların çoğaldığı ilkbahar aylarında atık barajlarının kapaklarının açılması sadece bir dedikodu mu? Gerçekte Emet ve Bigadiç’teki konse

tre asit tesislerinden kaynaklanan atık suların tama

mı Marmara havzasına gitti.

• Teknolojilerimiz gelişmeye başladı, verimlerimiz arttı ama üretimimiz daha çok arttığı için atıklarımız ve atık sorunlarımız giderek daha da arttı.

• Kurulan atık barajlarının önce kademe kademe yükseklıklarını arttırdık sonra alanlarını genişlettiğik. Günümüzde Kirkadaki gölet alanı 3 km² katı atık al

an ise 2 km²’yi aştı. Aşağıdaki şekilde Kirk’a’dan 2014 deki atık alanları ve 1986-1990 arası atık alanları verilmiştir. En az 1 asır daha çalışacak bu tesi

er
III. OTURUM

BOR POLİTİKALARI VE STRATEJİSİ PANELİ

atıklarımızı nereye atacağız acaba? Üstelik bu tesis 2 ayrı sulama barajına sadece bir kaç km mesafededir.

- Simav çayı Bigadiç tesislerinin sadece 360 m uzaklığında geçmekte ve Marmara havzasına gitmektedir. Bigadiç deprem riski taşıyan bir bölgededir. Deprem veya günümüzde sıkça görülmeye başlanan aşırı yağış bu akarsuya bor salınımına neden olabilir ki bu salınım çayın Marmara denizine kadar geçtiği her yerde çevresel felaket yaratabilir.

- Bor endüstrisindeki atık sorunu sadece bize ait değil. En önemli rakibimiz olan Rusya’daki Dalnegorsk tesislerinde de benzer sorunlar belirlenmiştir. Ancak bu tesis okyanusa sadece 30 km uzaklığına ve deniz seviyesinde 150-160 m yüksekliktedir. Bu tesisin açık deniz deşarj olanakları vardır.
1960 lı yıllardaki düşük verimli kesikli üretim yöntemlerinden başlayarak göreceli yüksek verimli ve yüksek kapasiteli sürekli üretim yöntemlerine geçebildiğimiz süreç 30 yılını aldı.

Atık yönetimine atık barajları yaparak önem vermeye başladık. Ancak bu barajlar deprem potansiyeli ve günümüz küresel iklim değişiklikleri nedeni ile tehlike potansiyelinin büyüklüğünü de artırdı.

Çevreyi daha etkin korumaya başlamak için 30 yıl daha zamanımız yok.

Bor içeren atık sularımız Marmara havzasına ulaşarsa besin kaynaklarımızı zarar görür.

Bor ürünleri vazgeçilmez değildir ama besin kaynaklarının sürekliliğinin sağlanması vazgeçilmezdir.

Sonuçlar bor endüstrisinin mevcut konumu ile sürdürülebilirliğinin risk altında
olduğunu göstermektedir. Bu nedenle bor endüstrisinin atıklarından köklü çözümlerle kurtulmamız gerekmektedir. Bunun için bor endüstrisinin atık yapılarını daha detaylı irdelemek gerekir.

BOR TESİSLERİMİZİN YAPISI

Bor tesisleri; cevher yatağından madencilik, cevherin gerektiğinde çeşitli yöntemlerle zenginleştirilmesi, cevherin doğrudan veya zenginleştirildikten sonra üretimde kullanılması kademelerinden oluşur.

- **Cevher yatağı:**
 Kolemanit: Bigadiç, Espey, Hisarcık, M.Kemalpaşa
 Tinkal: Kırka
 Üleksit: Bigadiç

- **Cevher zenginleştirmeye tesisleri:** Tümünde
 Atıkların tehlike potansiyeli orta. Atık sular maksimum 600 ppm (Kırka’da) bor içerir.

- **Kimyasal proses tesisleri:** Atıkların tehlike potansiyeli çok yüksek. Atık sular 5000-7000 ppm B içerir.
 Boraks pentahidrat: Kırka, Bandırma
 Boraks dekahidrat: Bandırma, Kırka
 Borik asit: Emet, Bandırma

Deşarj limitleri

- Denize deşarj: Maksimum 500 ppm B
- Karasal deşarj: Maksimum 0,5 ppm
- Sulama sularındaki 4 ppm B bitkileri öldürür.
Cevher zenginleştirmeye tesislerinde ne yapmalıyız?

Soru çözümlü yolu: Cevherdeki ekonomik değeri olan yan minerallerin ayrılması (Kullanılabılır kil cevheri yaratılması) sulu ortamda zenginleştirme tekniklerine alternatif kuru ortamda zenginleştirme yöntemlerin geliştirilmesi:

- Uygulanan elle ayıklama (Yüksek üretim kapasitelerine uygun değil, ama işsizliği azaltma yararına iyi bir çözüm!)
- On-line olarak ölçülebilir fiziksel özelliklere göre ayıklama (Örneğin renge göre)
- Killerin tabakalı yapısını katı/gaz ortamında değişirmeye ve parçalanmasına yönelik zenginleştirme teknikleri. Potansiyel adaylar: Organik maddeler (Glikol, Gliserin, Aseton vs.)

Boraks tesislerinde ne yapmalıyız?

- Boraks pentahidrat tesislerinde su fazlalığı vardır. Bu nedenle katı atıklar ancak zayıf ana çözelti (~%18 Na₂B₄O₇ içerikli) ile yıkanabilmektedir. Bu nedenle verim %80 seviyesinde kalmaktadır.
- Kırka'da yıllık üretim kapasitesi 1 milyon 200 bin tona erişmektedir.
- Bu yılda 210.000 t Na₂B₄O₇ ye eşdeğer borun (43.000 t/y B) sıvı ve katı atık alanlarına atılması demektir.
- Bu atık 10 milyar m³ suyu kullanılamaz hale getirme potansiyeline sahiptir.
- Verimi su ile de çıkarmak için yılda yaklaşık 850.000 t su buharlaştırılmalıdır.
- Bu buharlaştırma ile yaklaşık 55 milyon $'lık değeri olan 157.000 t boraks pentahidrat üretilebilir.
- Kendimize sormamız gereken soru: Çok kazanmak mı? Çok risk almak mı?

Borik asit tesislerinde ne yapmalıyız?

- **Hammadde:** Kolemanit (Tinkal ülkemiz için iyi bir alternatif değil. Yan ürün sodyum sülfat üretim kapasitesini sınırlar.)
- **Yan ürün:** Silikatlı minerallerin çözünmesi ile oluşan MgSO₄ (Etkin olan safsizlık) ve Na₂SO₄. Bu yan ürünlerin proseten normal çıkışını yoksut. Bunların konsantrasyonu arttıkça ürününe konsantrasyonları da artar.
• Borik asit için kullanıcılar tarafından belirlenmiş sülfat sınırlaması vardır. Bu sınır giderek düşmektedir. 1990’lı yıllarda kadar 1000 ppm sülfat içeren ürün satılabiliyordu, bu rakam önce 500 ppm e ve sonra 150 ppm e düşmüştür. Gelecekteki daha düşük sınırlamalar için hazırlıklı olmamız gerekli.

• Ürün sağlığı sülfat konsantrasyonu arttıkça çözeltilerin alınmasına ve korunmasına dikkat edilmektedir. Bu nedenle verim %90-92 seviyesinde kalmaktadır.

• Çözüm: Proseste MgSO₄ oluşunun mümkün en düşük seviyeye çekmek ve verimi %5-6 artırmak.

• H₃BO₃ üretimindeki verim ve saflik sorunlarını çözmenin en iyi yolu, reaksiyonun kil mineralleri ile reaksiyonu girmeyen bir asitle yürütülmesidir. Bu asit kolemanite etki etmesi için borik asitten daha kuvvetli, ancak kil minerallerine etki etmeyecek kadar da zayıf bir asit olmalıdır.

• Bu temel fikre uyumlu organik asitlerdir. (Asetik, propionik veya aynı seriden diğer asitler)

• Bu asitler tek başına kullanıldığında asidin suda çözünürlüğü yüksek kalsiyum tuzu ikinci etapta H₂SO₄ ile jipse çevrildikten sonra serbest asit prosese geri dönüştürülebilir. Saf jips üretimine de olanak sağlayan bu procese gowerit çözmesi ile B₂O₃ kayıp problemi vardır.

• Alternatif olarak proseste organik asit - H₂SO₄ karışımı kullanılabilir. Bu durumda zayıf organik asitin tampon etkisinden de yararlanılır (pH = 3,5-4) korozyon sorunu da çözülebilir.

• Organik asitler varlığında kolemanitin bozunma hızı düşüktür. Jipsin aşırı doygunlüğünün giderilmesi için gerekli süre (2,5-4 saat) göz önüne alındığında düşük reaksiyon hızı sorun yaratmaz.

• Bu proses 8 yıllık araştırma sonucu yaklaşık 7 yıl önce geliştirildi. Bu yolla atık çözelti 2/3 oranında azaltılabilmektedir.

Proseslerimizi gelişmek için ne yapmalıyız?

• Proseslerin gelişmesi bilgi biririmimizin kullanımı ve araştırma potansiyelinin yüksektilmesi ile sağlanabilir.

• İlgili kuruluşlar: ETİ MADEN, BOREN

• BOREN: Sadece tüketimi araştırma potansiyeli olan ürünlerin üretimine yönelik projeleri destekliyor. Çevresel etkileri içeren projeler desteklenmiyor.

• Etimaden: BOREN’e kuruluş kanunu nedeni ile aldığı paranın kendi adına yapılan projelere harcanmadığına inanıyor.

• BOREN: Bir araştırma kurumudur ve uzun vadeli projelere destek verebilir. Ancak mevcut sorunları da görmezlikten gelmemelidir.
ETİ MADEN: Ticari bir kuruluş ve üretim sorunlarını en hızlı şekilde çözmesi gerekir.

Atık göletlerin yapısı

- Atık göletlerindeki çözeltiler ortam sıcaklığında doyundur. (Boraksça, borik asitçe, üleksitçe, kolemanıtçe)
- Göletlerden doğal evaporationla su buharlaştırırken yağmurda da seyrelmektedir. Çözelti seviyesi yazın düşerken baharlarda ve kışın artır. Meteorolojik faktörler çözelti seviyesini kontrol eder ve net etkiye belirler.
- Bor endüstrimizin yer aldığı bölgelerde bu etki düşük seviyededir. Göletlerimiz yaklaşık aynı çözelti hacmini korurlar.
- Çevreye zarar vermeden göletlerdeki çözelti yok edilmiş. Atıkları yok edilmesi için alternatif geri kazanım yöntemleri.
- Çözeltilerden borun kazanılması için uygulanan endüstriyel proses solvent ekstraksiyonu yöntemidir. ABD deki Searles gölünden 600 m³/h debili çözelti işleinen tesis uzun yıllar çalıştırılmıştır. Bu yöntemi göletlerdeki yılların birikimini hızla yok etmek için kullanabiliriz. Teknolojinin gelişmesi ile aşağıda kısaca açıklandığı gibi yeni teknikler de gelişmektedir.
- Ötektik donmalı kristalizasyon son yıllarda geliştirilen düşük enerji harcamalı bir yöntemdir. Bu yöntem çözelti bileşenlerine (su ve ilgili tuza) ayırma ve bu yolla atığı yok etme yöntemidir. Ancak bor tuzları açısından araştırılması gerekiyor.
- Memran prosesi: Bu yöntemün uygulanabilmesi için membranla konsantrre edilen çözeltinin sıcaklığı yükseltilerek kristalizasyonu önlenmeli ve sonra sıcaklığı düşürtülerek çözünmüş madre kristallendirilmelidir. Ancak en az 50°C civarında çalışabilen uygun membran henüz geliştirilmediği için bu yöntem günümüzde uygulanamaz.
ETİ MADEN’ın irdelenmesi:

- **Deneyim:** Boraks ve borik asit üretiminde yaklaşık 55 yıllık iyisi ile kötüsü ile deneyimlidir. Bu kuruluş bir okuldur. Ben de bu okulda deneyim kazanmışım. En büyük gelişmeleri üretim teknolojileri ve üretim sorunları konusunda araştırma yaptığımız, deneyimlerimizi kullanarak kurduğumuz tesislerde kazandık. Bu araştırmalar ve bilgi birikimi yeni gelişmeleri beraberinde getirdi.

- **Deneyimi kullanmama:** Son yıllarda yeni tesis kurma ile ilgili ihale ilanları üretimin en düşük enerji girdisi ve en yüksek verimle yapılmasını sağlama yolunda. Oysa en iyi bilgi kendisinde. Proses sorumluluğunu müteahhitte atmak çözüm yolu değildir.

- **Beklenti:** İşi alan müteahhitin bu işin uzmanlarını bularak bu koşulları sağlayan prosesi tasarlaması ve tesis kurması.

- **Alternatif proseslerin riski müteahhitçe değil ancak ETİ MADEN’ce alınabilir. Gelişmiş proseslerin projelendirilmesi ya ETİ MADEN’ce yapılmalı veya istekleri doğrultusunda proje firmalarına yaptırılmalıdır.

- **Her yeni proses bazı riskler taşır. Ancak riskler pilot denemelerle azaltılabilir.**

Beni dinlediğiniz için teşekkür ederim.

Dr. Orhan YILMAZ: Sayın Başkanım, Kıymetli Genel Müdürlerimiz. Hepinize saygılarımı sunarak konuşma başlamak istiyorum. Ben, ETİ MADEN olarak uyguladığımız stratejiyi, yaptığıımız yönetimsel operasyonları, mevcut durumumuzu, ne yapmak istediğimizi ve daha iyi olmak için neler yapılmasını gerektğini sizlerle paylaşmaya çalışacağım.
Peki, Dünya yıllık bor tüketimi ne kadar?
4 milyon ton, yani rezervin biri veya bir başka ifade ile 1000 yıl yetecek rezerv var elimizde.
Peki, Dünya bor pazarı ne kadar?
2 milyar dolar.
ETİ MADEN bu pazarın ne kadara sahip?
Yarısına. ETİ MADEN pazarın tamamına tek başına sahip olsa bile bu, 2 milyar dolar olur.
Peki, elyaf sanayinin cirosu ne kadar Dünya’da?
10 milyar dolar.
Türkiye’de bu sektörden ne kadar pay alıyor?
150 milyon dolar.
Elyaftan devam edelim elyaf daha sonra ne oluyor?
Bir sürü şey oluyor. Onlardan bir tanesi kompozit malzeme. Kompozit malzemenin Dünya’da pazarı ne kadar?
100 milyar €.
Türkiye bu sektörde nasıl bir paya sahip?
Cüce bile değil.
Tabloya bu şekilde bakıldığında yapılacak şey çok net ortaya çıkarıyor. Türkiye’nin çok ciddi bir şekilde malzeme sanayine ve yüksek teknoloji ürünler üretenece malzeme geçmiş, yanı akıl satması gerekiyor. Şu anki mevcut durumda sattığınız şey akıl değil mal. Biz ETİ MADEN olarak tedarikçiyiz, birçok sayıda sektörün tedarikçisiziyiz. Bir hiçbir zaman somutlaşamıyoruz, soyutuz, yani tüketici bizi görmüyor. İlke de dük yakınında somutlaşmaya, hayaletten gerçekliğe doğru dönmemeye başladık. Tuttuk dedik ki madem öyle, yani bor kimyasalları ne kadar çok üretirseniz o kadar satılabilen bir şey değil, pazarın tüketim hızı da sizin...
kapasiteniz de sınırlı; o zaman yığın halinde satış mümkün kılacak stratejiler geliştirmek gerekiyor. İşte yığın satış sağlayabilecek, bizi soytan somut çokaracak projelerden bir tanesi “Etimatik”.

Peki, Etimatik nedir?

Etimatik, deterjan olmayan temizlik ürünüdür. Deterjan dediğinizde kelime anlamı petrolden üretilen diye başlıyor. Bunların tamami (çoğu) kanserojen çünkü petrol türevi ve fosfat içeriyor. İlk defa biz fosfat ve petrol türevi içermeyen bir temizlik ürünü ürettiğimizden.

Bu saydıklarının yanı sıra endüstriyel çapta onlarca deney gerçekleştirilmiştir. Bu bir pazarlama stratejisi olarak görüyoruz, yani teknik pazarlama yapıyorduz.

Sanayi tesislerinin üretim servisleri var bir de tedarikçileri var. Tedarikçiler genellikle proses bilmez ve sistemın bütünlüğünü görmez, sizin temas ettiğiniz insanlar tedarikçi, tedarikçiye teknik bir ürünü anlatmaya çalışıyorsunuz. En-
dürstride üretim yapan firmalara yeni petrol olmayan, kömür olmayan, bakır olmayan bir mali yeni bir umut ile satmaya çalışan sanaaız. Bor bu kadar zor. Elinizde kömür var var satırsınız, bakır var var satırsınız ama bor sektörü böyle bir sektör değil. Üretim arttırğa satısa da artan bir sektör değil.

Bir başka konu ferrokromda çalışan arkadaşlar da var. Yakında Güney Afrika’da bol miktarda ferrokrom sanayine bor kimyasalı satacağız. Ferrokrom sektöründe de ham madde harmanına bir miktar bor kimyasalı eklenirse, %10 civarında enerji tasarrufu sağlanır.
Buralarda bor kimyasallarının temel işlevi enerji tüketimini azaltmasıdır. Kastettiğim bu sektörler de büyük enerji tüketen ve enerjiye bağımlı sektörlerdir.

Malzemeye odaklanmanızı şeklinde ifade etmiş olduğum husus bor kimyasallarının yığın şekilde tüketimi açısından çok önemli. Çimento, demir-çelik sektöründe başardığımızı metalürji sektöründe de başaramızzı lazım. Bununla ilgili çalışmalarımız da var.

Yaptığımız ve yapacağımız operasyonel işlerle ilgili çok daha fazla konuşabiliyorduk. Ancak, sizleri daha fazla sıkmak istemiyorum. Beni dinlediğiniz çok teşvik ederim.

Muammer ÖCAL: Dr. Sedat SÜRDEM sunumunu yapmak üzere yerine alıyor. Evet, buyurun efendim, buyurun.

Dr. Sedat SÜRDEM: Hayati borla geçmiş insanların yanında, bor üstatlarının yanında konuşmak benim için biraz zor olacak ama onların başarılarına bağımsız olmak bir iki kelime etmeye çalışacağım. Öncelikle bu programı düzenleyen ve böyle bir fırsatı bize sunan Maden Mühendisleri Odası ve Başkanına çok teşekkür ediyorum. Efendim burada BOREN’in bora yaklaştıranı, bakışını, BOREN stratejilerini ve BOREN’in çalışmalarını sunmaya çalışacağım. Ona geçmeden önce borla alakali biraz bilgi vermek istiyorum müsaadelerinizle. Bugün defalarca ifade edilmiş; ETİ MADEN’in web sitesinden aldığım bir harita üzerinden, Bor rezervlerinin dünyada dağılımını gösterebilirsiniz. Türkiye’nin %67 oranında. Eğer Türkiye rezervlerin bu kadar yüksek olması karşısında harın son 10 yılda ki ETİ MADEN’in üstün çalışmalarını ile dünya pazara ancak %47’lik bir paya ulaşabilmiştir. Baktığımız zaman ana bor kimiyasalları üretimini konusunda bu noktalar gelmiş bir kuruluş olan ETİ MADEN İşletmeleri Genel Müdürlüğüğe bu başarıları çalışmalarından dolayı ülkemiz adına çok teşekkür ediyoruz. Bu birçok alanda kullanılıyor ama özellikle ana kullanım alanlarını şöyle sıralamak mümkün. Bu-
gün borun en çok kullanıldığı sektör cam sektörüdür, bunun içerisinde tabi cam elyafı, borosilikat camlar, fiberglass, hepsini düşününebilirsiniz. Cam sektörü Dün-

ya’da bor tüketiminin, bor pazarının yanında fazlasını tutmaktadır. 1950 önce-
sine bakıldığımız zaman bor açısından böyle bir sektör yoktu. Bunu şunun için
anlatıyorum; bugün mevcut bor rezervleri 1000 yıl yetecek kadar gözküse de cam
sektörü gibi yeni sektörlerde bor kullanımının alınaklı hale getirilmesiyle stra-
	ejik bir madde haline gelebilir. Örneğin enerji sektöründe, enerji depolama ve

taşırma arac olarak kullanımla imkânı olabilen bazı bor bileşikleri kullanılmaya
başlandığı anda ki çok yakın zamanda kullanıma sunulacağına inanıyorum, bü-
yük bir potansiyeli harekete geçirecektir. Tabi burada % 47’lik satın alınmamış

önemden ayrıca şöyle bahsedebiliriz; mesela Suudi Arabistan petrol kaynaklarına sahip

olan bu kaynaklardan sıradan_job numarayı ait sahip olmak, ancak petrokimya ürünlerinin ne kadarını üretmek

onların üretimi zorlandığı zamanlar için da önemli.

Onunla birlikte daha ilerisinden bahsedelim; bor ucu ürünlerinin çok daha kıymet-

li, yaklaşık 100 milyar dolarlık bir pazardan bahsediyoruz. Tabi ki sadece bor

kimyasalları değil, burada de Genel Müdürümüz bunlardan bahsetti, kullanım

alanı yanı malzemede kullanılan alan çok önemli.

Burada boru farklı kılan nedir? Yanı bu kadar üzerinde konuştuğumuza göre, bu

kadar değerli olduğunu düşündüğümüze göre nedir boru farklı kılan şey? Bir iki

işteşia alan dışında final ürün dediğimiz, bahsettiğimiz tüm alanlarda aslında

bor katkı malzemesi olarak kullanılır. Borun katkı maddesi olarak kullanımı çok

geniş, o kadar geniş ki bunlarda bir uzmanlık alanından, borda bir uzmanlık

alından, yani bora müşahhas bir uzmanlık alanından söz edemiyorsunuz. Şu-

radan bir bakalım isterseniz; borun katkı maddesi olarak kullanıldığı durumlardan

çoç çeşitli etkisinden söz etmek mümkün. Boru sihirli bir değnek gibi, her

derde deva ilaç gibi düşününebiliriz. Abartmıyoruz gerçekten, bor kimi zaman mu-

kavemet artırıcıdır, kimi zaman ısı yalıtımı sağlar, kimi zaman alev geciktirici,

duman bastırıcıdır, kimi zaman antimikrobiyal etken madde, kimi yere süper

iletken etki gösterir. Kimsi yere kanser önleyici, bazen katı yağlayıcı bazen rad-

yasyon veya savunma zirhi, bazı yere enerji taşıyıcı-dепolyayııcı, bazı yere ışıl
dayanım arttıracak, kimi zaman bitki besleyici, kimi zaman temizlik maddesi.

Bunların tamamı aynı bir kimyasal ile elde edilen özellikler değildir, her biri

farklı özellikle. Bazen aynı kimyasal da olabilir ama genelde değişik etki için
dışıltabilir bor kimyasalları kullanılır. Her hastalığa tek bir ilaç olmadığı gibi her

amaç için te tek bir bor kimyasalını kullanılmaz. Bor önemli bir özelliğe sahip,

çoç farklı etki mekanizmalarıyla çok farklı ürün formatlarını içerisinde çok farklı

özellikler ortaya çıkarabiliriyor. Bu da bora değil bor bileşiklerinin özelliklerine

vermek gerekir.

BOREN’den bahsetmek olursak; Enerji ve Tabii Kaynaklar Bakanlığı’nın işlişkili

kuruluşu olup, Enstitünün merkezi Ankara’da’dır. Açıq ismi Ulusal Bor Araştırma-
ma enstitüsü, kısaltılmış hali BOREN'dir. 28 kişi toplam kapasitemiz. Bir Enstitü Başkanı ile 3 koordinatörlükten teşekkürülz. 9 tane yönetim kurulu üyemiz var, tabi bu bize avantaj sağlıyor. 9 tane yönetim kurulu üyemizin farklı kurumlardan gelmişi onların alanlarında uzmanlıkları ve tecrübeleriyle bize katkıları büyük oluyor. BOREN 2003 yılında kurulduğunda kuruluş kanunu gereği birçok görevler verilmiş, gerçekte çok geniş bir yetki ve görev alanı var. Program ve projeler çerçevesinde hazırladığımız stratejik ve teknolojik planımız ile AR-GE, Teknoloji Geliştirme ve Yöntemi, İş Ekosistemi Geliştirme ve Yöntemi, Bilimsel Ortam Geliştirme ve Yöntemi faaliyet planlarımız kapsamında yer almaktadır. Kanun gereği bir teknoloji ve strateji planlayıcı rolümüz var; finans, insan kaynağı ve altyapı destekleyici rolümüz var; üniversite, AR-GE kuruluşları, sanayi sektörleri, kamu vb. tüm paydaşlarla işbirliği rolümüz var; politika ve teknoloji uygulayıcı-geliştirici rolümüz var.

Peki, BOREN ne ile ilgilenir? BOREN, stratejik önçelik olarak, herhangi bir teknolojik uygulamanın; yaygın ve etkin bor kullanımı potansiyeli ve/veya bora dayalı rekabet avantajı sağlama potansiyeli (Teknoloji değeri) ile ilgilenir. Geliştirceğimiz teknolojinin yaygın ve etkin bor kullanım sağlama önemi, geliştirme işi genel olarak önemlidir. Yani miktarın çok veya az olmasından ziyade ekonomik değer daha önemi. Tabi burada yine ürün-teknoloji geliştirme kapsamında bu önçeliklere uygun olarak; tamamen yeni ve yenilikçi bor ürünleri ve kullanım alanları bizim için çok önemi. Mevcut bor ürünlerine pazar genişir, yeni bor kullanım alanlarında bulunması çok önemi, ayrıca ülkmizde bor sektörü ve bora dayalı şirketlerin zinciri geliştirilmesi noktasında uygulanabilir (fizibıl) olan mevcut ürünlerin ülkemizde üretilmesi de bizim için değerli ve önemi.

Demin söyledilmiş birçok faaliyeti gerçekleştirebilmemiz için bir planlama ile bir yaklaşım geliştirmemiz gerekiyor demiştik. Stratejik yaklaşımından bahsettik, yine BOREN'in genel bir yaklaşımından bahsedelim; burada gördüğünuz başlıkların “Teknolojik Planlama ve Yönetimi” usulünün olduğunu biliyoruz. Teknoloji planlaması üzerinde fazla durmayacağım ancak bu bizim için hem stratejik plan

138

Üçüncü başlığımız “İşbirlikleri”; biz saydığımız bu kadar işi, bu kadar görevi yerine getirebilmek için (Sayın Müsteşarımda yorumunda bor araştırmaların-da izlenmesi gereken stratejiden bahsetmişti) kendi bünyemizde çok büyük bir altyapı-laboratuvar, insan kaynağı oluşturmak yerine hali hazırda bu yetkinliklere haiz üniversiteler, kamu, sanayi, özel sektörle yapacağımız işbirlikleri ile hedeflerimizi gerçekleştirmeyi planladık. Biz nerede bir yetkinlik varsa bulup o kapsmanda işbirlikleri yaparak hedeflerimize ulaşmayı planladık. Yaptığımız iş-

raz önce TÜBİTAK ile yaptığımız ortak çağrı işbirliğinden bahsettim. Pavezyum firmasına ait desteklediğimiz projeler kapsamında önce elementel bor (%95) üretimini gerçekleştirdik, daha sonra farklı bir yöntemle nano elementel bor (%98,5) ile magnezyum diborür (MgB_2 (%95) üretimini gerçekleştirdik. Lisans hakkını verdim. Devam eden proje kapsamında da karbon katıklı elementel bor ve MgB_2 üretimini pilot ölçekte gerçekleştirmekteyiz. En son ziyaret ettiğimiz de Sayın Dr. Selçuk ACAR öyle diyordu; dünyada şu anda pilot ölçekte bilinen (belki üreticiler ancak stratejik olarak bilgi vermiyor, onları bilemiyoruz) nano boyutta elementel bor üretimini yap Garcı, bir nano elementel borun fiyatına baktığımız zaman, çok değerli olduğunu görüyoruz, saflığına göre 250.000 $/kg seviyelerine kadar çıkabilmektedir. Pavezyum ürettiği elementel boru Roketsan’a satıyor. MgB_2 tozunu da üretiyorlar aynı tesiste. Orada ürettiğimiz tozların ticariлеşmesi noktasında sıkıntılar var, özellikle MgB_2’den bahsedeyim; MgB_2’yi bilmiyorsunuz düşük veya yüksek manyetik alan gerektiren uygulamalarda süperiletken mal-

zeme olarak kullanılabilmektedir. Ancak bu tozun tel haline getirilmesi zor. Alan tamamen farklı bir yetkinlik gerektiriyor. Bu bağlamda tel üretimi nok-

tasında Colombus firmasyyla görüşmeler yaptık, örnekler gönderdiler, ayrıca manyetik ölçümler noktasında da Japonya ile görüşme halindeyiz. Bortek firması ile alakalı bilmiyorsunuz, Eskişehirde Sayın Prof. Dr. Nuran HOCAMAZ hezagno-

nal bornitrürü (h-BN) nano boyutta üretti. Hocamız öyle diyordu; h-BN dünyada doğrudan nano boyutta sentez noktasında başka üretken yok. Bir firma var yurt
dışında onlarda sentez sonrası öğütürek nano boyuta getirildiği süpörüyor.

Tabi desteklediğimiz bazı projelerin sonuçlarınıın uygulanması noktasında yap-

tığımız bazı işbirlikleri de bulunmaktadır. Bir plastik firması olan Eurotek ile ter-

moset ve termoplastikte bor kullanımını noktasında işbirliği yaptık, kayda değer sonuçlar aldık, iki kat mukavemet gördüğümüz ürünler var, bunlardan bazila-

teklediğimiz proje sonuçlarının paylaşımı ve borun alçı levhada kullanımı ile endüstriyel üretimi noktasında işbirliğine gittik. Onlarla yaptığı çalışmaların
bir kısmında başarılı olduğunu bir kısmında başarısız olduğunu gördük.

Ülkemizde mevcut ve gelişmekte olan teknoloji alt yapısının, uzmanlığının ve “know-how”’ın BOREN ihtiyaçları ile örtüştürülmesini, ürün geliştirme faaliyetlerinin yapılmasını bor ürünlerinin ticarileşmesini, ürün geliştirme faaliyetlerinin yapılmasını, ürün geliştirme faaliyetlerinin yapılmış olan bor esaslı yakıt pili sistemlerinin, elektrikli araçlarda ve insansız hava araçlarındaki menzil arttırmaya yönelik ticari konsept/ürün geliştirme amacıyla TÜBİTAK Marmara Araştırma Merkezine bağlı Enerji Enstitüsü bünyesinde mevcut laboratuvar altyapısı üzerine “BOREN-TÜBİTAK MAM Bor ve Hidrojen Teknolojileri Yetkinlik Merkezi” oluşturuldu. Söz konusu Merkezde; BOREN destekli 3 ayrı proje kapsamında geliştirilmiş olan bor esaslı yakıt pili sistemlerinin, elektrikli araçlarda ve insansız hava araçlarında menzil arttırmaya yönelik ticari konsept/ürün geliştirme amacıyla halen iki adet proje yürütülmektedir.

Dr. Sedat SÜRDEM: Teşekkürler Sayın Başkanım. Yetkinlik merkezleri BOREN’in idari ve stratejik kontrolü altında farklı kurumlar bünyesinde kurulan merkezlerdir. Bir tanesinden bahsedelim mesela; TÜBİTAK-MAM hidrojen enerjileri, sodyum bor hidrür ve yakıt pili konularında yetkin. Bu yetkinliğin kullanımı anlamlı BOREN ile MAM arasında imzalanmış bir protokol çerçevesinde yetkinlik merkezi kurduk. Bu bağlamda konu ile alakalı olarak MAM bize proje tekliflerinde bulunuyor, bu projelere veya yetkinlik merkezine doğrudan destek sağlıyoruz.

Muammer ÖCAL: Yani, yetkili, sizin adına karar verecek birim mi oluyor?

Dr. Sedat SÜRDEM: Yok burada, biz orada projelerini destekliyoruz, onlar yürütüyor projeleri.

Ayhan YÜKSEL: Sayın Başkan, Değerli Konuklar hepinizi TMMOB Maden Mühendisleri Odası Yönetim Kurulu ve şahim adına saygı ile selamlıyorum. Odamız tarafından düzenlenen çalıştayımız saat 9.30’da başladı, iki oturum ta- mamlanmış ve saat şu anda 17.00 suları ve bu saate gelmemize ve bu saate tanışmamızı kararlı ve dirençli bir kalabalık ısrarla bizleri dinlemeye devam ediyor. Normal şartlarda kongre ve seppozyumlarda bu oranda bir katılım oranı olmaz. Şu anda 100 kişinin üzerindeyiz, sabah 9.30’da başlayıp 17.00 civarında hala bu ka- dar insan ısrarla bizleri dinleme devam ediyor demek ki çalıştayımız doğru bir şekilde planlanmış ve oturumlarda yapılan açıklamalar ve bilgilendirmeler önemlidir olup umarım yetkililer ve siyasilerde konuya aynı şekilde ilgi gösterirler.
Ancak bugün buraya pek çok siyasiyi ve bürokratı davet etmemize rağmen salon-daki ilgilerden ve yetkililerden başka kimse gelmedi.

Saygıdeğer konuklar, tüm dünyada geleceği yakıtı ve sanayinin tuzu olarak tanımlanan, Dünya rezervlerinin % 70’ine sahip olduğumuz bor madenlerimizle ilgili olarak madencilik politikalarını belirleyen ETBK yetkilileri ve sanayi politikalarını belirleyen Bilim ve Teknoloji Bakanlığı yetkililerinin konuya göstermiş olduklarını ilgisizliklerini hepinizin huzurunda eleştiriyorum. Ancak biz Maden Mühendisleri Odası olarak her zaman olduğu gibi üzerine düşünen görevlerimizi yapmaya devam ediyoruz ve bundan sonra da devam ederek ülkemize, ülkemiz madenlerine ve tabi ki bor madenlerimize sahip çıkma, konuyu gündemde tutmaya devam edeceğiz.

Maden Mühendisleri Odası 60 yıllık süre içerisinde bor madenleri konusunda söylenmesi gereken hemen hemen her şeyi söyledi. Aslında bugün çalıştayı ilk oturumdan bu oturuma kadar ki söylenenlerin hepsini dikkat ile dinlediğimizde de odamızın söylediklerinin birbirlerini doğru bildiklerini kabul gördüğünü görmekteyiz. Odamız sabahki açılış konuşmamda da söylediğim gibi 60 yılından daha bilim, emek ve hainlikten yana olarak doğru ballık emek archiklarnı söylemeye devam etti. Bizim özümüz ne ise sözmüş de o olmuştur. Ön sözmüşde söylemiş ise son sözmüzde de aynı söz söylemişizdir.

Bor madenleri neden tek elden işletmelidir? Bu sorunun cevabının net olarak anlaşılabilmesi için ilk olarak tek elden işletilmeden önceki dönem ile sonraki dönem arasında bir karşılaştırma yapmak gerekiyor ki bunu daha iyi anlayabilelim.

Sayın Katılımcılar,

Bor rezervlerimiz 1978 uygulamaları ile bu oranlara ulaşırken diğer ülkelerin Dünya içerisindeki payı ne durumda ve nasıl değişti? Sorusunu cevaplayacak olursak Dünyanın diğer üreticilerinin rezervlerinin en yüksek pay %7.6 ile Rusya’da, %6 civarında bir rakam ile Amerika Birleşik Devletlerinden dedir. Bu rakamlar üzerinden “bor stratejik midir değil midir?”, “re-

Tartışma konusunu rezerv oranları ve Dünya bor ticaretinde ki payımız yönenden incelediğimizde bakım karşımıza nasıl bir durum çıkmaktadır? Dünya’da ki bor tüketim miktarı bugünkü hızıyla devam ettiği takdirde rakiplerimizin rezervlerinin bitmek üzere olduğunu “bu sabah ki oturumda da belirtildiği üzere yaklaştığı 10 yıllık bir rezerv” olduğunu görüyoruz. Bu durumun çok iyi değerlendirilmesi gerektiğini ve özellikle taleplerinin de bu nedenden kaynaklandığı düşüncemekte olduğunu da söylemeden geçemeyeceğim.

gerektiğini söyleyenlerin iştahını kabartan ikinci husus ise bu satış rakamlarıdır.

Daha önce, sadece borda değil, Türkiye’nin diğer metal madenciliğinde de olduğu gibi genelde üretimlerimiz ve ihracatlarımız ham cevher üzerinden yapılmakta olduğundan dolayı Dünya ticaretinde ki payımız hiçbir zaman olması gereken düzeye ulaşamadı.

1978 uygulamaları nedeniyle bor madenlerimizin tek elden yürütülmesi sonrasında madencilik alanında gerçekleştilen gelişmelerden sonra devlet tarafından yapılan yatırımlar sonucunda geçen 40 yıllık sürece de bir türlü rafine ürünlerin artması sonucunda ihracatımız 85 milyon dolardan 800 milyon dolara, toplamda satış da yaklaşık 850 milyon dolara çıkmıştır.

Saygıdeğer Konuklar;

Dünya’da bor tüketimi ne kadar?

Bu soruyu cevapladıkta sonra sabah oturum başkanına gelen mesaja benzeyen bir cevap vermek istiyorum. O soruya bir cevap gelmedi.

Soruda varılmak istendiği gibi bor madenlerinin bir kısmını özel sektör verip üretimi arttırmak, 6-7 milyon tona çıkarırsak, nereye satacağız, nasıl satacağız, hangi fiyata satacağız? O zaman başta tabloya dönülecek ve satış fiyatı 40-50 dolarlara düşecektir.

Bu yanlışlığın daha iyi anlaşılabilmesi için siyasi bir tartışmadan örnek vermek istiyorum. Üniversite öğrencisi iken 2 siyasetçi bir panel için davet edilmişlerdi. İktidar ve muhalefetin temsilcileri olan bu siyasiler tartışırken İktidarın ekonomik verilerinin nereden girdiğini, yükseliş rakamlarını döşeyen kendi temsilleri ile paylaştıktan sonra muhalefet temsilleri şu cevabı verdi. “Komşum ve ben aynı cinsiyette ve aynı yaşta birer çocuk sahibiyiz. Benim çocuğum zamanla kilo alıyor, boyu uzuyor özetle gelişmeye devam ediyor. Bu açıdan baktığında başarılıyım. Çünkü çocuğum büyüyor. Fakat aynı zamanda komşunun çocuğunun gelişimini incelediğimizde benim çocuğumdan daha uzun ve gelişmiş durumda acaba başarılıyım diyebilir miyim?”

Saygıdeğer Konuklar;

Ülkemiz bor madenciliğinde bu gelişim eğilimlerini verdiği örneğe göre değerlendirilmişde bu imkânlara rağmen ülke bazında madencilik bazında sanayi teknolojileri bazında, ne kadar gelişmişiz yeterli gelişmiş miyiz, doğru yolda mıyız?

Teknolojinin ve sanayinin gelişimi ancak ve ancak bilimsel araştırmalarla sağlanabilir. Ancak ülkemizde ve Dünyanın değişik ülkelerinde bor konusunda yapılan bilimsel çalışmaların grafiklerle ifade edildiği tablolar baktığımızda sağlık olağan rezerv itibarını ele almayız, bu konusunda pek çok çalışma yapıması gerekten hiç bor olmayan ülkelerden da az çalışma yapıldığı görülmektedir. Ülkemizde üniversiteler, BOREN ve ETİ MADEN İşletmeleri tarafından gerçekleştiren bilimsel çalışmalar yapılmadığı, desteklenmediği, ilgili Bakanlıklar tarafından gerçek politikalar oluşturulmadan gerekli hedeflere ulaşamamız, bu zengin yer altı kaynaklarını değerlendirilememiz mümkün değildir.
Aslında bu sorun ülkemizizin genel bir sorunu, ülke olarak sahip olduğumuz tüm sektörlerde benzeri bir inceleme yaptığımızda tabloda görülen ülkelerin çoğunu belki iki sohbetlerde konuş başa getiriyoruz, Türkiye’ye göre. Ama teknoloji ihracatında bakıtığımızda, en yüksek payımız %1,9’la 2010 yılında gerçekleşmiş. Meksika neredeyse bizim 8 katımız, Endonezya 5 katımız. Ülke olarak teknoloji politikaları geliştirmemiz gerekiyor.

Aslında bu sorun ülkemizin genel bir sorunu, ülke olarak sahip olduğumuz tüm sektörlerde benzeri bir inceleme yaptığımızda tabloda görülen ülkelerin çoğunu belki iki sohbetlerde konuş başa getiriyoruz, Türkiye’ye göre. Ama teknoloji ihracatında bakıştığımızda, en yüksek payımız %1,9’la 2010 yılında gerçekleşmiş. Meksika neredeyse bizim 8 katımız, Endonezya 5 katımız. Ülke olarak teknoloji politikaları geliştirmemiz gerekiyor.

farklı bir şekilde delinmeye çalışıldı. 2012’de başka bir şekilde, taşeronlaştırma yasaşını üzerinden aynı şey yapılmaya çalışıldı.

Sayın Katılımcılar;

Saygıdeğer Katılımcılar;

Sonuç olarak şu nu söylemek istiyorum ki; “Ülkemizde küresel politikalar bütün hızıyla devam ediyor. 2012 yılında TBMM gündemine gelen ve hala de genel kurulu gelmek için gerekli koşulları bekleyen bor madenlerinin taşeronlaşma yolu ile Gizlice özeleştirmesini sağlayacak olan taslak bunun en güzel önüğedir.

Saygıdeğer Katılımcılar, Değerli Konuklar;
TMMOB Maden Mühendisleri Odasi tarafından düzenlenen çalıştayın hazırlan-ması aşamasında emeği geçen Yürütme Kurulu Başkanı Sayın Muammer ÖCAL ile Yürütme Kurulu Üyeleri Ümit Ragip ÜNCÜ ve Aşşen ERTEN’e, oturumlara katılarak bilgi birikimlerini bizlere paylaşan değerli Oturum Başkanlarına Ve Katılımcılara çok teşekkür ediyor ve hepinizi Odamız Yönetim Kurulu ve şah-sım adına saygı ile selamlıyorum.
FORUM

2. Eskişehir’den, SAM Araştırma Merkezi, Anadolu Üniversitesinden, Prof. Dr. Alpagut KARA
3. Havacılık sektörü kompozit üreticilerinden, İhsan OTABATMAZ.

Buradalar ise kendilerine bu şansı vermek istiyorlar. Buyurun, kim, sıra, hangisinden?

Muammar ÖCAL: Bir uzman daha kazandık yanı, bir uzman daha kazandık.

Sunumumda da ifade ettiği üzere tablonun sol tarafı ham bor ve rafine bor
ürünlerinin üretim miktarı ve pazar payını göstermektedir. Tablonun diğer kısmını ise bor ürünlerinin katkı maddesi olarak kullanıldığına göre üretilecek ürünlerin pazar payını olup 100 milyar dolar civarındadır. Sayın Genel Müdür bu ifadelerin yanlış olduğunu ifade etmektedir. Ancak yine kendisi Dünya deterjan pazarının 85 milyar dolar olduğunu ve ürettikleri ETİMATİK ile % 10'lük pazar payına ulaştıklarında ülkenin kazancının 8,5 milyar dolar olduğunu ifade etmektedir. Sadece bor türeverliden üretilen bir deterjan ile 8,5 milyar dolar elde edildiğine göre tabloda belirtilen diğer ürünler üretil.lineWidth=1دخ bilderinde ya da pazar neden 100 milyar dolara çıkmıyor.

Sayın katılımcılar benim burada ifade ettiğim üretimimiz ham bor ve bor türeverlerinden 100 milyar dolar kazanacağımızdır. Benim söylemek istediğim bor kullanılan ileri teknoloji ürünleri üretilmesi ile mevcut olan pazarın 100 milyar dolara çıkmıştır.

Benim söyledigim bu husus sadece bor için geçerli olmayıp tüm metal madenlerimiz ve endüstriyel hammaddelerimiz için geçerli olup ülkemizin yapması gereken tüm sektörlerde ileri teknoloji ürünleri üretilmesi ve üretimimiz önemlidir.

Benim söylediğim bu husus sadece bor için geçerli olmayıp tüm metal maddederimiz ve endüstriyel hammaddelerimiz için geçerli olup ülkemizin yapması gereken tüm sektörlerde ileri teknoloji ürünleri üretilmesi ve üretimimiz önemlidir.

Dr. Orhan YILMAZ: Öncelikle şuunu söyleyeyim. Buranın sahibi ben olduğumda oranın ücret politikalarını belirleme salihayetim olacak. Devlet memuru olan her adam bilir ki bütün ücret politikaları tamamen hükümetlerin kontrolünde. Ne Genel Müdürlerin, ne Müsteşarların, ne Bakanların ücret ile ilgili hiçbir

Muammer ÖCAL: Evet başka sorusu olan? Buyurun

Tümdoğelim şekilde söyleyorum. Borun mademki böyle bir enerji tüketimini diştürme fonksiyonu var. Zaten elyaf sanayinde kullanıyoruz, elyaf sanayi de bir nevi cam sanayi demektir. Buna de Overrides, hatta bununla ilgili Almanya’da sempozyumlar düzenleniyor. Bunun yazılı belgeleri var İngilizce, Rusça yanı ETÍ MADEN olarak fikrin bizden çıktığına ve böyle bir neticenin geldiğine dair istersemiz veririm. Teknoloji Geliştirme Dairesi Başkanı arkadaşımız Dr. Murat BİLEN burada o sözler. Bu konu ferrokrom kullanımı için de geçerli, sizin bir fırınınınız var. Gelip birisi de diyor ki eğer buna bor katarsanız enerji tasarrufu sağlarsanız. İnsanlar haklı olarak böyle bir prosese müdahale et-

Burak BİRKAN: Peki efendim, bu bir maliyette azalma sağladı mı üretimde, düz cam üretiminde özellikle? Enerji tasarrufu sağladı fakat bor katılması bir maliyet düşüşüne de imkân sağladı mı acaba?

Muammer ÖCAL: Evet önce Sedat Beye söz vermek istiyorum çünkü Orhan Bey 2-3 kere cevap verdi biraz ses telleri dinlensin. Buyurun Sedat Bey

Mehmet TORUN: Karşılıklı konuşup cevap vermek istemişiz ama benim de bir sürü sorum olabilir. Bu soruların yanıtı kendilerinde olması gerekir, muha-
tabi kendileridir. Zaten biz baştan bunun ölü olduğunu söylemiştık. İtiraz ediyor ölülük devam ediyor diyor anladığım kadarıyla, ölü üzerinden de konuşmaya çok gerek görmüyorum. Teşekkür ediyorum.

Muammer ÖCAL: Sedat Bey, siz Sayın TORUN’u bir çaya veya kahveye veya öğle yemeğine kuruma davet edin. Orada teke tek izah edin. Şimdi birinci sorunuz için sözü Sayın Genel Müdürü veriyorum.

ye çıkalım diye bir iddiam yok ama en azından böyle artık 1 lira 100 lira gibi bir değere çıkan ürünler bastıralım. Uç ürünlerde biraz çalışmayla tam tepeye çıkacak diye diye miktar yok ama en azından 10 lira 1000 lira gibi değerlerle ürünler ulaşılabilir bir zahmet Genel Müdürümde Gazili saygı duyuyorum size kesinlikle tezat bir şey yok.

Dr. Orhan YILMAZ: Şimdi ben bunu bir açıklamak istiyorum

Prof. Dr. Ferhat GÜL: Bir zahmet, yani ben hakikaten şey de kaldım. Genel müdürüm de Gazilisiniz, çok saygı duyuyoruz.

Dr. Orhan YILMAZ: Şükrolun

Prof. Dr. Ferhat GÜL: Kesinlikle tezat bir şey yok ama gördüğümüzü uyarmak zorundayız. Teşekkür ediyorum.

Bizim kastettiğimiz büyük miktarlardır. Çünkü elimizde 3 milyar tondan fazla rezerv var ki bu da yeni aramalarla 4 milyar tona, 5 milyar tona çıkacak. Yani çok rezerv var diye çok tüketim olmuyor ki… Bizim kastettiğimiz şey iyıgın tüketime doğru hangi sektörlerde ilerleyelim? Yoksa kalkıp mikro bir konuyu alırsak işin içinden çıkamayız. Yani bilmiyorum derdimi tam anlatbildim mı?

Dr. Orhan YILMAZ: Burada hiçbir sıkıntı yok yani bunların yapılmasında hiçbir engel yok. Sadece müteşebbis lazım yani bu müteşebbis ile olacak bir şey. Çünkü o zaman kilcal damarları bağlandığınızda yüz binlerce (irili ufaklı alanlar) bunları biz bilemeyiz. Yani bu Türkiye’nin görevi eyvallah ama ETİ MA- DEN’in görevi böyle bir işi olamaz, kaybederiz.

Prof. Dr. Ferhat GÜL: Size görev olarak addetmiyorum, yanlış anlamayın. Ama Türkiye bunu yapmalı.

Fehmi ÜNLÜ: Fehmi ÜNLÜ, ben yine söz aldım. Kusura bakmayın ama bir katkısı bulunmak istiyorum yine de. Şu an için katkısız bulunmak istiyorum, oda yetkililerine teşekkür ederim, böyle bir Bor Çalıştayı düzenlediler. Ancak bu Bor Çalıştayından gerekli faydanın sağlanabilmesi için bizim zihniyetimizi değiştirmemiz lazımdır. Bu tür toplantular Türkün Türk’e propagandası şeklinde geçiyor.
Şimdi bu sektörde borun daha çok tüketilebilmesi için, tüketim alanlarına yönelebilmesi için, paydaşların olması lazım. Burada sanayi tarafının temsilcilerinin olması lazım, cam sanayi yok, elyaf sanayi yok, deterjan sanayi yok.

İlker ERTEM: Yasaya göre eski yönetim kurulu yürütme ya da genel müdürlüğe yetki verme hakkı var mı, yasal olarak böyle bir şey var mı? Yoksa biz yaptık olduğu şekilde mi?

Dr. Sedat SÜRDEM: Bilemiyorum, hukukçu değilim ben.

Türkiye AR-GE harcamalarında toplam bütçesinin %2’nin üstüne çıktığını hedeflemiş. Ama şu anda %1’in altında (%0,9) bu bakımından hedefin gerisinde göze kuyor.

Eğer bizim AR-GE harcamalarınıza personel parasını da koyarsanız artı orada kuracağınız tesisin ilk yatırım giderini de koyarsınız, Türkiye AR-GE harcamalarının üzerinde bir pay ayrılmaktadır.

Mustafa GÜZEL: Pek tatmin olmadım ama teşekkür ediyorum.

Muammer ÖCAL: Teşekkür ederim. Sayın Başkanın bir duyurusu var. Ayhan Bey duyuruyu yapacağınız bu sened için.

Muammer ÖCAL: Şimdi bir dakika, ben son söz olarak, bir esprile kapatmak istiyoruz. Şimdi iyi bir maden mühendisi nasıl olmalı, biliyor musunuz? İyi bir maden mühendisi, aklı ile akıpm, gözüyle sonda, eliyle de ihzarat yapabileme-dir. İyi akşamlar.
BOR ÇALIŞTAYI
SONUÇ BİLDİRGESİ

“Bor Çalıştayı” TMMOB Maden Mühendisleri Odası tarafından 19 Aralık 2014 tarihinde, Ankara’da, ATO Meclis Salonunda, 250 katılımcı ile gerçekleştirilmişdir. Çalıştayda bor madenlerimizin dünü bugünü ele alınarak dünyadaki gelişmeler ışığında ülkemizde ne yapılmasını gerektiği konusunu uzmanlarca değerlendirilmiş ve Türkiye’nin olması gereken “Bor Politikası Nedir” sorusunun cevabı ortaya konmuştur.

Bilindiği üzere Dünya üzerinde bulunan doğal kaynakların dengesiz bir şekilde dağılmış olması, bu kaynaklar üzerindeki uluslararası arası çekişmeyi de beraberinde getirmiştir. Doğal kaynaklar ülkelerin stratejik konumlarını da ortaya çıkartmaktadır. Madencilik ile ilgili politikaların gelecek nesillerin haklarının da kollanarak tayin edilmesi gerektmektedir. Şayet bir ülke kendi kaynaklarının yurt içinde işlenmesine yönelik politikalara gelistirip uygulayamıyorsa; bu ülke sanayileşmiş ülkelere ucuz hammadde sağlamak, diğer bir deyimle ülke zenginliklerini gerçek değerlerinin çok altında yurt dışına aktarmaya mecburdur.

Bor, stratejik bir madendir. Bor minerallerinin, son derece özel kimyasal yapıları nedeniyle, hammadde, raflı ürün ve nihai ürün şeklinde, büyük çoğunluğunda alternatif olmak üzere, sayısal kullanım alanı mevcuttur. Bor mineralleri, ilave edildikleri malzemelerin katma değerlerini olağanüstü yükseltmekte, bu nedenle sanayinin tuzu olarak adlandırılmaktadır. Gelişen teknolojiler, bor kullanımını ve bor minerallerine olan bağımlılığı artırmaktadır. Hammadde, yarı mamul ve mamul madde olarak, cam, porsele, seramik, fiber glass, metalurji, elektronik, tp, enerji, tarım, havacilik, savunma gibi çok farklı sektörlerde kullanılan bor mineralleri sanayinin vazgeçilmez hammaddelerindendir. Özellikle uçak ve uzay sanayilerinde, yapış elemanı ve yakıt olarak kullanımları söz konusudur. Bor minerallerinin, diğer yakıtlarla karşılaştırıldığında yüksek yoğunlukta enerjiye sahip olmaları nedeniyle, yakıt olarak da kullanımları konusunda yapılan araştırmaların sonuçları doğrudan etkilenmiştir.
tirmalar bütün hızıyla sürdürülmektedir ve uygulamaları da günümüzde ortaya konmaktadır.

Ülkemizin, başta rezerv açısından Dünyada lider olduğu bor madeni olmak üzere, tüm doğal kaynaklarından daha fazla çıkarılması ve elindeki bu stratejik hammadde kaynaklarını ile ilgili geleceğe dönük stratejiler üretmesi için doğal kaynak ulusalcılığı stratejisini sistemli bir biçimde uygulamalıdır. Bir ülkede doğal kaynak ulusalcılığının amacı; bu yolla ülkelerin doğal sermayesini işleyip bu nesneler ekonomik, toplumsal ve insanın sermayeye çevirmek; kalkınmayı bu tarzda gerçekleştirmek ve daha yüksek bir gelir düzeyi sağlamaktır. Bu nedenle; kalkınma modellerini, öncelikle öz kaynaklarına dayandıran ve eksiklerini dış kaynaklarla destekleyebilen ülkeler; kalkınma sürecini istikrarlı ve güvenli bir şekilde aşabileceklerdir. Türkiye’den bor alan ülkeler, bundan katma değeri yüksek bor ürünleri üretmekte ve bu ürünleri ülkenin stratejik kaynaklarına uygulamak ve bu durumda boru aktarmakta ve bu durumda boru aktarmakta. Oysa diğer ülkeler için hammadde kaynağı olan bor madenlerinin Dünya pazarda hak ettiği konumu ele geçirebilmesi, Türkiye’nin ancak katma değeri yüksek çözümlendirilmiş bor ürünleri üreten teknolojileri geliştirilmesi ve bunların ülkenin teknolojik ürünlerin üretimde kullanılması ile mümkündür.

2172 sayılı Yasa ile üretme, işletme ve pazarlama teknelinin elde edildiği 36 yıldan bu yana kadar devlet kamu eli ile üzerine düşen görevi yerine getirmiş, pazara belirli bir noktaya ulaşmış ve ham-rafine ve kimiyalı bor ürünleri üretimde konusunda ulaşması gereken noktaya yaklaşmıştır. İçinde bulunduğumuz Dünya birinci bor turevleri piyasasının bugün için toplam 2-2,5 milyar Amerikan Doları olduğu düşünülebilir. Türkiye’nin bugün için bor pazarı payı 2013 yılı itibari ile 850 milyon dolar civarında seyretdedir. ETİ MADEN (ETİBANK) 1978-2000 yılları arasında yaklaşık 400 milyon dolar yatırım yapmış, 2,8 milyar dolar gelir elde etmiş, 2001-2013 yılları arasında 1.175 milyar dolar yatırım harcaması
yapmış, 6,2 milyar dolar gelir elde etmiştir. ETİ MADEN’in 2013 yılında devam eden ve onay bekleyen projeleri toplam 545 milyon dolardır. 2013 yılı geliri toplam 826 milyon dolar olan ETİ MADEN’in FVAÖK: %52, NET KAR: % 42 olmuştür. Bor madenlerini işleten ETİ MADEN «Altın Yumurtlayan bir tavuktur».

Bor Minerallerinin; çok yaygın kullanılan ileri teknoloji hammadde olması nedeniyle, ulusal sanayimizin gelişirmesinde lokomotif olabilecek özellikli bir hammadde. Ulusal sanayimizde şeffaf işbirlikleri yapılarak, bor madenlerinin çekirdek sanayi olduğu üç ürünün üretimi ve dolayısıyla daha fazla kamu değer yaratılması ülkemiz açısından yararlı görülmektedir. Borlara dayalı, yeni ürün ve teknolojilerin üretimi için; daha fazla AR-GE çalışması ve dolayısıyla daha fazla katma değer yaratılması ülkemiz açısından yararlı görülmektedir. Borlara dayalı, yeni ürün ve teknolojilerin üretimi için; daha fazla AR-GE çalışması ve dolayısıyla daha fazla katma değer yaratılması ülkemize daha fazla katma değer yaratılması için acil ihtiyaç olarak değerlendirilmektedir. Ulusal sanayimizde şeffaf işbirlikleri yapılarak, bor madenlerinin çekirdek sanayi olduğu üç ürünün üretimi ve dolayısıyla daha fazla kamu değer yaratılması ülkemiz açısından yararlı görülmektedir. Borlara dayalı, yeni ürün ve teknolojilerin üretimi için; daha fazla AR-GE çalışması ve dolayısıyla daha fazla katma değer yaratılması için acil ihtiyaç olarak değerlendirilmektedir. Ulusal sanayimizde şeffaf işbirlikleri yapılarak, bor madenlerinin çekirdek sanayi olduğu üç ürünün üretimi ve dolayısıyla daha fazla kamu değer yaratılması ülkemize daha fazla katma değer yaratılması için acil ihtiyaç olarak değerlendirilmektedir. Ulusal sanayimizde şeffaf işbirlikleri yapılarak, bor madenlerinin çekirdek sanayi olduğu üç ürünün üretimi ve dolayısıyla daha fazla kamu değer yaratılması ülkemize daha fazla katma değer yaratılması için acil ihtiyaç olarak değerlendirilmektedir. Ulusal sanayimizde şeffaf işbirlikleri yapılarak, bor madenlerinin çekirdek sanayi olduğu üç ürünün üretimi ve dolayısıyla daha fazla kamu değer yaratılması二字に見えます。
kamu gelirlerinin önemli bir kısmının bor üç ürünlerine yönelik araştırma-geleştirmeye projelerine aktarılması, katma değeri yüksek ürünler ihraç edebilmenin en rasyonel ön adımı olacaktır.

Öz olarak;

• Gelişen teknolojiler, bugün sanayinin tuzu olarak adlandırılan borun kullanımını ve bağımlılığını artırmakta ve borun stratejik mineral olma özelliği giderek daha da belirginleşmektedir.

• Ülkemizin gelişmesinde, doğal kaynaklarımızın ekonomik katkısını verimli şekilde sağlayacak dilli, tutarlı bir sanayi, teknoloji, enerji ve bunlara bağlı olarak madencilik politikasının uygulanmasına ihtiyaç vardır.

• Büyük rezervlere sahip olmak kendi başına bir anlam ifade etmemektedir, asıl olan bu rezervlerden sağlanacak faydanın en üst seviyeye çıkarılması için katma değerleri daha yüksek ürünlerine yönelik ve ülkemizde boru sanayileri kurmak büyük önem taşımaktadır. ABD, Avrupa, Japonya, Çin gibi ülkeler için bor stratejik bir öneme sahiptir. O halde, Türkiye bu güç odaklarının duyarlılığını iyi analiz edip, strateji ve taktiklerini planlarken ortak çıkarlar çerçevesinde kendi çıkarlarını koruyan en uygun kesişim alanlarını bulup uygulamaya koymak durumundadır.

• Gelişmek ve refah seviyesini yükseltmek için, Türkiye'nin ulusal inovasyon konusunda yetkinleşmesinden başka çözümü yoktur.

SONUÇ BİLDİRGESİ

Devletçe işletilen bor madenlerinin özelleştirilerek parçalanması rekabeti doğurgac ve bu parçalarla sahip olan şirketlerin Dünya pazarlarında geçmişte olduğu gibi birbirleri ile rekabete girmeleri sonucu satış fiyatlarında önemli düşüşler görecektir. Bu anlamda ülkemiz bor ihraçetleri de aynı ölçüde gerilemeyecektir. Herhangi bir tasarısı ile adı olursa olsun bir şekilde bor fabricalarını ve madenleri ile ilgili 2840 sayılı Kanunda değişiklik yapmak, üçüncü şahslara işletmekte, ülkemizin bu değerli kaynağın işletme, üretim ve pazarlama hakkının şu veya bu şekilde farklı şirket isimleri ve kimlikleri arasında uluslararası sermaye tarafından kullanılmasını ve kontrol edilmesini kaçınılmaz bir son olarak karşımıza getirecektir.

Özellikle borlar, yılda çok yüksek madenlerimiz olduğunu günlük ve dar çerçevede ele alınmamalı, ülkemiz ve uluslararası çıkarları ön planda tutulmalıdır. Bu bağlamda bor madenlerimiz basit oyunlara alet ihmalmeli ve borların oluşturulması kesinlikle düşünülmemelidir. 2840 sayılı Kanundaki «Bor Madenleri Devletçe İşletilecektir» hükümi asla değişirilmemelidir. Bor madenleri, bor üretimindeki ve pazar politikaları kamu ve özel sektör ile işbirliği yapmaya çatlamak özelleştirmenin ve kaynakları aktarmanın bir diğer biçimi olarak olduğundan bu yollarla müsadde edilmemelidir.

Kamuoyuna saygıyla duyurulur.
TMMOB Maden Mühendisleri Odası
Yönetim Kurulu
Ankara, 19 Aralık 2014
Odamiz tarafından 19 Aralık 2014 tarihinde Ankara Ticaret Odası Meclis Salonunda gerçekleştirilen Bor Çalıştayı video görüntülerı üç bölüm halinde internette (YouTube-Video Kanalı) yayına açılmıştır. Çalıştay görüntülerini alttaki linklerden izleyebilirsiniz.

I. OTURUM - TÜRKİYE’NİN BOR SERÜVENİ
http://youtu.be/Vj5T8JusCFY

II. OTURUM - SANAYİNİN TUZU BOR
http://youtu.be/RoiTQiVKbdw

III. OTURUM - BOR POLİTİKALARI VE STRATEJİSİ
http://youtu.be/7h99WCgTQa0
As the leading boron manufacturer of the world, we continue to provide services to the industries from glass to textile, from agriculture to ceramics...
Türkiye’nin Göz Bebeği
Dünya Bor Lideri

Bor’un dünyadaki lider üreticisi olarak camdan tekstile, tarımdan seramiğe kadar birçok sektöre hizmet vermeye devam ediyoruz...

Ürünlerimiz

BOR KİMYASALLARI
• Etibor-48 (Boraks Pentahidrat)
• Borik Asit
• Boraks Dekahidrat
• Bor Oksit
• Etibor-68 (Susuz Boraks)
• Etidot-67 (Zirai Bor)

BOR KİMYASALLARI EŞDEĞERİ
• Öğütülmüş Kolemanit
• Öğütülmüş Üleksit
• Eticol Ceramic
• Eticol Ecoglass
• Kalsine Tinkal
• Etimatik

DİĞER ÜRÜNLER
• Sülfürik Asit
• Zeolit
• Kalsine Pirit

www.etimaden.gov.tr
As the leading boron manufacturer of the world, we continue to provide services to the industries from glass to textile, from agriculture to ceramics...

BORON CHEMICALS
- Etibor-48 (Boraks Pentahydrate)
- Boric Acid
- Borax Decahydrate
- Boron Oxide
- Etibor-68 (Anhydrous Borax)
- Etidot-67 (Disodium Octaborate Tetrahydrate)

BORON CHEMICALS EQUIVALENT
- Ground Colemanite
- Ground Ulexite
- Eticol Ceramic
- Eticol Ecoglass
- Calcinated Tincal (Compacted)
- Etimatic

OTHER PRODUCTS
- Sulphuric Acid
- Zeolite
- Calcined Pyrite
As the leading boron manufacturer of the world, we continue to provide services to the industries from glass to textile, from agriculture to ceramics...

Our Products

BORON CHEMICALS
• Etibor-48 (Boraks Pentahydrate)
• Boric Acid
• Borax Decahydrate
• Boron Oxide
• Etibor-68 (Anhydrous Borax)
• Etidot-67 (Disodium Octaborate Tetrahydrate)

BORON CHEMICALS EQUIVALENT
• Ground Colemanite
• Ground Ulexite
• Eticol Ceramic
• Eticol Ecoglass
• Calcinated Tincal (Compacted)
• Etimatic

OTHER PRODUCTS
• Sulphuric Acid
• Zeolite
• Calcined Pyrite

www.etimaden.gov.tr